ALERT

Serious adverse effects resulting from the treatment with thalidomide prompted modern drug legislation more than 40 years ago. Post-marketing spontaneous reporting systems for suspected adverse drug reactions (ADRs) have been a cornerstone to detect safety signals in pharmacovigilance. It has become evident that adverse effects of drugs may be detected too late, when millions of persons have already been exposed.

In this project, an alternative approach for the detection of ADR signals will be developed. Rather than relying on the physician's capability and willingness to recognize and report suspected ADRs, the system will systematically calculate the occurrence of disease (potentially ADRs) during specific drug use based on data available in electronic patient records. In this project, electronic health records (EHRs) of over 30 million patients from several European countries will be available. In an environment where rapid signal detection is feasible, rapid signal assessment is equally important. To rapidly assess signals, a number of resources will be used to substantiate the signals: causal reasoning based on information in the EHRs, semantic mining of the biomedical literature, and computational analysis of biological and chemical information (drugs, targets, anti-targets, SNPs, pathways, etc.).

The overall objective of this project is the design, development and validation of a computerized system that exploits data from electronic healthcare records and biomedical databases for the early detection of adverse drug reactions. The ALERT system will generate signals using data and text mining, epidemiological and other computational techniques, and subsequently substantiate these signals in the light of current knowledge of biological mechanisms and in silico prediction capabilities. The system should be able to detect signals better and faster than spontaneous reporting systems and should allow for identification of subpopulations at higher risk for ADRs.

For further information, please visit:

Project co-ordinator:
ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM

Partners:

  • SOCIETA SERVIZI TELEMATICI SRL
  • UNIVERSIDADE DE AVEIRO
  • THE UNIVERSITY OF NOTTINGHAM
  • PHARMO COOPERATIE UA
  • AARHUS UNIVERSITETSHOSPITAL, AARHUS SYGEHUS
  • UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
  • UNIVERSITAT POMPEU FABRA
  • IRCCS CENTRO NEUROLESI BONINO PULEJO
  • FUNDACIO IMIM
  • LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE
  • ASTRAZENECA AB
  • UNIVERSITE VICTOR SEGALEN BORDEAUX II
  • AGENZIA REGIONALE DI SANITA
  • UNIVERSITA DEGLI STUDI DI MILANO - BICOCCA

Timetable: from 02/2008 – to 07/2011

Total cost: € 5.880.600

EC funding: € 4.500.000

Programme Acronym: FP7-ICT

Subprogramme Area: Advanced ICT for risk assessment and patient safety

Contract type: Collaborative project (generic)

Related news article:

Most Popular Now

Artificial Intelligence Predicts Dementi…

Imagine if doctors could determine, many years in advance, who is likely to develop dementia. Such prognostic capabilities would give patients and their families time to plan and manage treatment...

Using Machine Learning to Improve Patien…

Doctors are often deluged by signals from charts, test results, and other metrics to keep track of. It can be difficult to integrate and monitor all of these data for...

Researchers Uncover Security Issues with…

Use caution when entering personal health information into a convenient app on your mobile device, because not all apps are created equal when it comes to protecting your privacy, warns...

Self-Powered Paper-Based 'SPEDs' may Lea…

A new medical-diagnostic device made out of paper detects biomarkers and identifies diseases by performing electrochemical analyses - powered only by the user's touch - and reads out the color-coded...

New App Uses Smartphone Selfies to Scree…

Pancreatic cancer has one of the worst prognoses - with a five-year survival rate of 9 percent - in part because there are no telltale symptoms or non-invasive screening tools...

Nurses Becoming e-Nurses by Using Patien…

The ambitions of NHS Digital’s e-nursing week and the Royal College of Nursing's (RCN) 'Every nurse an e-nurse' campaign are being realised by nurses across the UK, who are seeing...

New Diagnostic Tool Spots First Signs of…

Researchers have developed the first tool that can diagnose Parkinson's disease when there are no physical symptoms, offering hope for more effective treatment of the condition. There are currently no...

Stroke Patient Improvement with a Brain-…

University of Adelaide researchers have shown that it is possible for stroke patients to improve motor function using special training involving connecting brain signals with a computer. In a "proof-of-principle...

eHealth Hub Call: Lean Startup Academy

The Lean Startup Academy is an unique opportunity to mature your business by systematically testing your ideas against the market with the support of experts. The course will help you...

Google Glass App Helps Autistic Children…

A prototype software application, to be used with the optical head-mounted display Google Glass, has been designed as a social-skills coach for children with autism spectrum disorder (ASD). A new...

Philips Innovations at IFA 2017 Put Cons…

At this year's Internationale Funkausstellung (IFA) in Berlin, Germany, Royal Philips (NYSE: PHG, AEX: PHIA) showcases new products and services that empower consumers to take an active role in managing...