VTT Develops a Simple but Extremely Sensitive Magnetometer

VTT Technical Research Centre of Finland has developed an innovative magnetometer that can replace conventional technology in applications such as neuroimaging, mineral exploration and molecular diagnostics. Its manufacturing costs are between 70 and 80 per cent lower than those of traditional technology, and the device is not as sensitive to external magnetic fields as its predecessors. The design of the magnetometer also makes it easier to integrate into measuring systems.

Magnetometers are sensors that measure magnetic fields or changes in magnetic fields. The kinetic inductance magnetometer developed by VTT makes use of the dependence of superconductors' electrical properties on magnetic fields. This has allowed research scientists to develop an innovative sensor element which is considerably more simplistic than conventional SQUID sensors. The new magnetometer is based on a single patterned thin film. It can be fabricated in a single-phase process unlike SQUID sensors, which require a layered structure and a multi-phase fabrication process.

The manufacturing costs of VTT's new magnetometer are estimated to be between 70 and 80 per cent lower than those of a corresponding SQUID sensor. It is also less sensitive to external disturbances such as the earth's magnetic field or electrical systems than its predecessors. This property will be useful in the development of new medical imaging techniques, such as magnetic resonance imaging based on ultra-low magnetic fields where the measuring fields can be commensurate with the earth's magnetic field.

Highly sensitive magnetometers are needed in medicine, for example, to detect minuscule changes in magnetic fields caused by nerve signals. In the context of neuroimaging this technique is called magnetoencephalography (MEG), and it can be used to locate pathological activity in patients with epilepsy who require surgical treatment, to diagnose autism or to map brain activity more generally. Magnetometers are also used in the mining industry for mineral exploration, in industrial quality control and in certain security applications.

VTT's innovative magnetometer is expected to hit the market in a few years' time.

A scientific article on the subject has been published in the Nature Communications journal, doi:10.1038/ncomms5872

About VTT Technical Research Centre of Finland
VTT is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. Every third Finnish technology innovation contains VTT expertise. VTT's turnover is EUR 310 million and its personnel totals 2,900.

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...