Researchers Call for Support for Data in the Cloud to Facilitate Genomics Research

In the journal Nature prominent researchers from Canada, Europe and the U.S. have made a powerful call to major funding agencies, asking them to commit to establishing a global genomic data commons in the cloud that could be easily accessed by authorized researchers worldwide.

This would increase access to the data for researchers, reduce the time and cost associated with transferring and storing data on local servers and accelerate genomics research worldwide. Storing data in the cloud has been shown to be as secure, if not more secure, than storing it locally.

With a typical university connection it can take months to download datasets from major international projects like the International Cancer Genome Consortium (ICGC) and the hardware costs associated with storing and processing those data can also prove quite expensive.

With cloud computing a data set from a big genome project can be executed in days, at a fraction of the price.

The authors propose that funding agencies request that major data sets be uploaded into the cloud and that they pay for its long-term storage. Data would then only need to be copied once and researchers would only have to pay for temporary storage while the analysis was in progress. Access would only be provided to authorized researchers.

"Currently a great deal of valuable time and money is spent by researchers transferring data from a repository to their own preferred server, instead of easily and cheaply tapping into a global data commons whenever they need to," said Dr. Lincoln Stein, Director of the Informatics and Bio-computing Program at the Ontario Institute for Cancer Research, leader of the ICGC's Data Coordination Center in Toronto and a lead author on the paper. "We encourage a larger investment in the cloud in order to use public funds more effectively and to help accelerate the pace of genomics research."

"Having authorized access procedures in place ensures respect for the wishes of data donors, including that their data be used safely and securely," said Dr. Bartha Knoppers, Director of the Centre of Genomics and Policy, McGill University. "Applying the Framework for Responsible Sharing of Genomic and Health-Related Data is a first step in enacting the human right of citizens to benefit from scientific advances and of scientists to be recognized for their work."

"The complexity of cancer biology means that we need huge data sets - basically, the bigger the better," said Dr. Peter Campbell, Head of Cancer Genomics at the Wellcome Trust Sanger Institute. "We have now reached a stage where these data sets are too large to move around - cloud computing offers us the flexibility to hold the data in one virtual location and unleash the world's researchers on it all together."

"The amount of genomic data is growing at an amazing rate. Moving data and analysis tools to the cloud will democratize access to data and to the computational resources required to analyze that data," said Dr. Gad Getz, Director of the Cancer Genome Computational Analysis Group at the Broad Institute of MIT and Harvard. "The expanded access will accelerate tool development, grow the population of researchers analyzing these rich data sets and ultimately increase the pace of scientific discovery. These cloud-based analysis platforms will also enable the testing of new distributed computing paradigms which expand both the scale of the analyses and the sophistication of the computational algorithms. We are now building a pilot of such a cloud platform."

"The establishment of novel powerful cloud computing frameworks enabling us to store, share and analyze data across borders will open new perspectives in cancer research," said Dr. Jan Korbel, group leader at the European Molecular Biology Laboratory (EMBL). "These will take into consideration developments in science and policies for the distribution and sharing of data sets as sensitive as patient genetic data ensuring a safe environment to serve the interests of both sample donors and researchers."

Cloud computing is most widely associated with consumer products, such as storing music, photos or editing documents in real time. But in fact a great deal of research is already conducted in the cloud, safely and securely. Cloud computing is shared resource, giving researchers access to storage and computing power as needed, instead of making a long term investment in computer infrastructure. This also maximizes the use of the infrastructure as it can be used by many researchers instead of just one.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...