Wearable Technology to Personalize Lu-177-DOTATATE Therapy for NETs

Researchers at the University of Washington in Seattle, Washington, are developing a user-friendly (worn at home) vest with technology that collects data to tailor personalized therapy for patients with metastatic, somatostatin-receptor-2 positive neuroendocrine tumors (NETs). The study was presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

Targeted therapy using lutetium-177 (177Lu)-DOTATATE greatly increases progression-free survival for NETs patients. While approved by the United States Food and Drug Administration (FDA), the FDA package instructions call for patients to receive a standardized protocol, regardless of size or weight. Traditionally, targeted radionuclide therapies are personalized based on dose to the main organs at risk (OAR, e.g., kidneys, liver, spleen).

"Organ specific dosimetry for the 177Lu-DOTATATE (Lutathera) is the norm at many medical centers outside of the United States," explains Robert Miyaoka at the University of Washington. "Longitudinal imaging studies are conducted after each therapy treatment to determine the cumulative dose to the OAR for each patient. The standardized 177Lu-DOTATATE treatment protocol in the United States consists of four 200 mCi doses spaced two months apart. Although this is safe for a vast majority of patients, it is less than optimal for most. Studies out of Europe are revealing that tailoring the number of treatment doses based upon the dose-limiting toxicity to the patient's OAR can more than double the progression-free and overall survival for NET patients undergoing 177Lu-DOTATATE therapy."

Another factor the researchers sought to address is the fact that traditional imaging-based methods for organ dosimetry estimation for 177Lu require three-to-four longitudinal imaging sessions spread over seven days. This is expensive, uses a lot of clinic resources and is burdensome to the patient.

"We propose to create a lightweight, low-cost, wearable, patient-specific technology that will allow organ-specific measurement recordings to be made within the comfort of the patient's home," Miyaoka says. "The garment [called a multi-detector personalized home dosimetry (MD PHD) vest] will house 15-20 small radiation detectors, strategically placed within the vest based upon the patient's own anatomy. In addition to the radiation detectors the vest will be coupled to a compact electronics pack that will acquire the data and send it via WiFi or cellular services to a secure website where medical personnel/software can check the data for quality control in near real-time."

He further explains, "The patient will be asked to wear the vest for a two-minute data acquisition once a day for seven (and up to 21) days. Based upon these at-home measurements and a single SPECT/CT image taken 24 hours after the therapy administration, organ specific dosimetry will be determined for all of the patient's OAR." With the information collected via the vest, physicians would be able to tailor the number of treatments based upon personalized organ dosimetry information.

Miyaoka reports, "Preliminary vest results from simulations are showing that at-home vest measurements made over 7-21 days can provide organ-specific washout rates with precision as good or better than the current accepted gold standard of three-four quantitative SPECT/CT images acquired over seven days. The initial goal of this technology is to enable personalized 177Lu-DOTATATE therapies in the United States and to lower the cost for treatment personalization throughout the world."

Abstract 313: "Wearable Technology to Enable Personalization of Lu177-DOTATATE Therapy for Neuroendocrine Tumor Patients," Robert Miyaoka, Larry Pierce, Robert Harrison and Hubert Vesselle, University of Washington, Seattle, WA. SNMMI's 66TH Annual Meeting, June 22-25, 2019, Anaheim, CA.

All 2019 SNMMI Annual Meeting abstracts can be found online at http://jnm.snmjournals.org/content/60/supplement_1.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI's more than 16,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice.

Most Popular Now

Apple Health Records Available for Allsc…

Allscripts (NASDAQ: MDRX) announced that Apple Health Records is now available for Allscripts Sunrise™, TouchWorks® and Professional EHR™ clients and their patients. Health Records brings together hospitals, clinics and the...

Philips Signs Agreement to Create Taiwan…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced that Taipei Veterans General Hospital (TPVGH) will utilize the Philips IntelliSite Pathology Solution to transform its...

Robotic Thread is Designed to Slip throu…

MIT engineers have developed a magnetically steerable, thread-like robot that can actively glide through narrow, winding pathways, such as the labrynthine vasculature of the brain. In the future, this robotic...

St Helens and Knowsley Advance with Ambi…

St Helens and Knowsley Teaching Hospitals NHS Trusthas successfully gone live with System C’s CareFlow Vitals as part of its ambitious strategy to accelerate digitisation and become a digital exemplar...

Machine Learning Improves the Diagnosis …

Researchers from Charité - Universitätsmedizin Berlin and the German Cancer Consortium (DKTK) have successfully solved a longstanding problem in the diagnosis of head and neck cancers. Working alongside colleagues from...

Using a Smartphone to Detect Norovirus

A little bit of norovirus - the highly infectious microbe that causes about 20 million cases of food poisoning in the United States each year - goes a long way...

Experimental Validation Confirms the Abi…

Insilico Medicine, a global leader in artificial intelligence for drug discovery, today announced the publication of a paper titled, "Deep learning enables rapid identification of potent DDR1 kinase inhibitors," in...

Computer Model could Help Test New Sickl…

A team of Brown University researchers has developed a new computer model that simulates the way red blood cells become misshapen by sickle cell disease. The model, described in a...

The Future of Mind Control

Electrodes implanted in the brain help alleviate symptoms like the intrusive tremors associated with Parkinson's disease. But current probes face limitations due to their size and inflexibility. "The brain is...

Medical Informatics Europe Conference 20…

28 April - 1 May 2020, Geneva, Switzerland. The European Federation of Medical Informatics (EFMI) presents the 30th Medical Informatics Europe conference (MIE) at the Geneva International Conference Center (CICG). This...