HAMAM

Despite tremendous advances in modern imaging technology, both early detection and accurate diagnosis of breast cancer are still unresolved challenges. Today, a variety of imaging modalities and image-guided biopsy procedures exist to identify and characterize morphology and function of suspicious breast tissue. However, a clinically feasible solution for breast imaging, which is both highly sensitive and specific with respect to breast cancer, is still missing. As a consequence, unnecessary biopsies are taken and tumours frequently go undetected until a stage where therapy is costly or unsuccessful.

HAMAM (Highly accurate breast cancer diagnosis through integration of biological knowledge, novel imaging modalities, and modelling) project will tackle this challenge by providing a means to seamlessly integrate the available multi-modal images and the patient information on a single clinical workstation. Based on knowledge gained from a large multi-disciplinary database, populated within the scope of this project, suspicious breast tissue will be characterised and classified.

HAMAM will achieve this by:

  • Building the tools needed to integrate datasets / modalities into a single interface.
  • Providing pre processing / standardization tools that will allow for optimal comparison of disparate data
  • Building spatial correlation information datasets to allow for new similarity and multimodal tissue models. These will be key in the detection and diagnosis of breast cancer
  • Building in adaptability that allows for the integration of other sources of knowledge such as tumour models, genetic data, genotype, phenotype and standardised imaging.

The exact diagnosis of suspicious breast tissue is ambiguous in many cases. HAMAM will resolve this using the statistical knowledge extracted from the large case database. The clinical workstation will suggest additional image modalities that may be captured to optimally resolve these uncertainties. The workstation thus guides the clinician in establishing a patient specific optimal diagnosis. This ultimately leads to a more specific and individual diagnosis.

For further information, please visit:
http://www.hamam-project.eu

Project co-ordinator:
EIBIR gemeinnuetzige GmbH zur Foerderung der. Erforschung der biomedizinischen Bildgebung

Partners:

  • Boca Raton Community Hospital Inc (USA)
  • MeVis Research GmbH (Germany)
  • MeVis Medical Solutions AG (Germany)
  • University College London (United Kingdom)
  • Radboud Universiteit Nijmegen - Stichting Katholieke Universiteit (Netherlands)
  • Charité - Universitätsmedizin Berlin (Germany)
  • The University of Dundee (United Kingdom)
  • Eidgenössische Technische Hochschule Zürich (Switzerland)

Timetable: from 09/2008 - to 08/2011

Total cost: € 4.250.000

EC funding: € 3.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Artificial Intelligence Solution Improve…

Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that difficulty finding the right volunteer subjects can undermine the effectiveness of...

Cardio-Respiratory Synchronization may R…

Researchers from the School of Engineering at the University of Warwick have managed to expand the knowledge of the cardio-respiratory system after conducting an experiment measuring heart rate during fast-paced...

South West London Pathology Picks CliniS…

One of the first pathology networks in the country, set up to serve more than two million people in south west London, has signed a contract with CliniSys for a...

AI-based AI-Rad Companion Chest CT Softw…

AI-Rad Companion Chest CT(1), an intelligent software assistant for radiology, was recently awarded the CE mark, which means Siemens Healthineers can start marketing this artificial intelligence (AI)-based software as a...

Spot On for Healthcare Technology Startu…

10 - 12 October 2019, Berlin, Germany. XPOMET Medicinale brings together care providers, patients, and in general stakeholders from all health-related fields and geographic regions. The Festival of Future Medicine and...

Call for Tenders: Studies on eHealth, In…

The European Commission is launching a tender for two studies to survey and analyse progress on the digital transformation of the health and care in the EU, in particular with...

7th MEDICA MEDICINE + SPORTS CONFERENCE

18 - 21 November 2019, Düsseldorf, Germany. What lengths do top athletes go to in order to reach peak performances and which findings in the field of professional sports are relevant...

Carestream Health Completes Sale of Heal…

Carestream Healthhas completed the sale of the company's healthcare information solutions business to Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, in 26 of the 38...

How can We Successfully Converge the Hea…

Opinion Article by Erik Janssen, VP, Innovative Solutions, Neurology, UCB Pharma. The fourth industrial revolution is upon us and fundamentally changing the way we live, work and interact across all industries...

Isansys Named as Finalist for OBN's Most…

Isansys Lifecare is proud to announce it has been shortlisted in the Most Transformative Digital Healthcare Company category at the OBN Annual Awards 2019. The award recognises the significant uptake...