Philips and PathAI Team Up to Improve Breast Cancer Diagnosis Using Artificial Intelligence Technology in 'Big Data' Pathology Research

PhilipsRoyal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and PathAI, a company that develops artificial intelligence technology for pathology, are collaborating with the aim to develop solutions that improve the precision and accuracy of routine diagnosis of cancer and other diseases. The partnership aims to build deep learning applications in computational pathology enabling this form of artificial intelligence to be applied to massive pathology data sets to better inform diagnostic and treatment decisions. The initial focus of this effort is on developing applications to automatically detect and quantify cancerous lesions in breast cancer tissue.

The accurate quantitative assessment of cancer involvement and scale is a central and challenging task for pathologists. This task, while critical to diagnosis and treatment, is very time-consuming and can place increased pressure on pathologists to conduct slide readings and analysis faster. Historically, pathologists have manually reviewed and analyzed tumor tissue slides using a microscope, but the rising shortage of pathologists and the increase in cancer caseloads(1,2) require digital pathology solutions and smart image analysis software that reduce pathologists’ routine workload, improve diagnostic accuracy and precision, and reduce error rates.

"Breast cancer is the most common cancer in women worldwide, with over 250,000 new cases(3) diagnosed every year in the U.S.," says Andy Beck, CEO of PathAI. "Our goal is to help patients receive fast, accurate diagnosis and support treating physicians to deliver optimal care by empowering pathologists with decision support tools powered by artificial intelligence. For example, identifying the presence or absence of cancer in lymph nodes is a routine and critically important task for a pathologist. However, it can be extremely laborious using conventional methods. Research indicates that pathologists supported with computational tools could be both more accurate and faster."

Deep learning is an algorithmic technique that is revolutionizing what is possible in areas such as finance, communication, automotive, natural language processing, computer vision and more. It allows computers to analyze vast amounts of data and automatically detect patterns and make accurate predictions. Philips has already implemented deep learning in its clinical informatics solutions for radiology such as Illumeo and IntelliSpace Portal 9.0. With the proliferation of digital pathology and whole slide imaging (WSI), computers will soon be able to learn and unlock the 'big data' potential of thousands of digital tumor tissue (histology) images and related patient data. As a pioneer in the digitization of pathology, Philips has created a leading digital pathology business through strategic investments, partnerships and technology licenses.

"Digitizing images in pathology has the potential to transform the field by unlocking new opportunities in image recognition," said Russ Granzow, General Manager of Philips Digital Pathology Solutions. "With computational pathology and the application of artificial intelligence there is an opportunity to increase efficiencies, enable greater accuracy and precision, and allow pathologists to see things and access insights not previously available."

Last year, Dr. Andy Beck and his colleagues from Harvard Medical School and MIT, won a global challenge on the detection of metastatic lesions in lymph nodes with a performance that rivals human error rates consistently. Now Philips and PathAI are partnering to ensure such highly promising technologies could find a practical application in aiding pathologists in their effort to deliver high quality, high confidence diagnosis.

1. The Royal College of Pathologists, https://www.rcpath.org/profession/workforce/workforce-planning.html, Accessed December 2016.
2. International Agency for Research on Cancer and Cancer Research UK. World Cancer Factsheet. Cancer Research UK, London, 2014.
3. www.breastcancer.org

About Royal Philips
Royal Philips (NYSE: PHG, AEX: PHIA) is a leading health technology company focused on improving people's health and enabling better outcomes across the health continuum from healthy living and prevention, to diagnosis, treatment and home care. Philips leverages advanced technology and deep clinical and consumer insights to deliver integrated solutions. Headquartered in the Netherlands, the company is a leader in diagnostic imaging, image-guided therapy, patient monitoring and health informatics, as well as in consumer health and home care. Philips' health technology portfolio generated 2016 sales of EUR 17.4 billion and employs approximately 71,000 employees with sales and services in more than 100 countries.

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

AI-Based App can Help Physicians Find Sk…

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...