HeartCycle

HeartCycle consortium, comprising 18 research, academic, industrial and medical organizations from 9 different European countries and China, will work to improve the quality of life for coronary heart disease and heart failure patients by monitoring their condition and involving them in the daily management of their disease. The consortium will also develop mechanisms to automatically report relevant monitoring data back to clinicians so that they can prescribe personalized therapies and lifestyle recommendations.

Compliance to prescribed therapies is a common problem associated with long-term treatment, and will become even more problematic as the European population ages and chronic disease becomes more prevalent. There is strong evidence that increasing the level of patient compliance may have a far greater impact on the health of the population than improvements in specific medical treatments. The HeartCycle project intends to tackle this in two ways.

Firstly by creating a 'patient loop' that gives patients continuous feedback on their state of health, their progress towards achieving health status milestones, plus motivational tips and suggestions for a healthy lifestyle and diet. In the course of the project it will be investigated whether such measures will improve the adherence to prescribed therapies. Monitoring each patient's condition will be achieved using a combination of unobtrusive bio-sensors built into the patient's clothing or bed sheets and home appliances such as weighing scales and blood pressure monitors. Sensing of an individual patient's physical exertion, body orientation and ambient environment will provide additional information so that the system can put the monitoring data into context.

Secondly by enabling a 'professional loop' in which relevant data on a patient’s state of health and therapy adherence is automatically communicated to a hospital information system. This professional loop will allow doctors to monitor each patient's condition and therapy response in order to create optimized individual care plans, as well as allowing them to identify deterioration or sudden cardiac events that require immediate remedial action.

For further information, please visit:
http://www.heartcycle.eu

Project co-ordinator:
Philips Research

Partners:

  • Aristotle University of Thessaloniki (Greece);
  • Clothing Plus Oy (Finland);
  • CSEM Centre Suisse D'electronique Et De Microtechnique Sa (Switzerland);
  • Empirica Gesellschaft für Kommunikations und Technologieforschung mbH (Germany);
  • Faculdade Ciencias e Tecnologia da Universidade de Coimbra (Portugal);
  • Fundación Vodafone España (Spain);
  • Hospital Universitario Clínico San Carlos (Spain);
  • Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (Spain);
  • Medtronic Ibérica SA (Spain);
  • Philips Electronics Nederland B.V. (The Netherlands);
  • Philips Research (Germany);
  • Politecnico Di Milano - Dipartimento di Bioingegneria (Italy);
  • Rheinisch Westfälische Technische Hochschule (Germany);
  • T-Systems ITC Iberia SA (Spain);
  • Universidad Politécnica de Madrid (Spain);
  • Chinese University of Hong Kong (China);
  • University of Hull (United Kingdom);
  • Valtion Teknillinen Tutkimuskeskus (Finland).

Timetable: from 03/2008 – to 02/2012

Total cost: € 21.985.444

EC funding: € 14.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Personal health systems for monitoring and point-of-care diagnostics

Contract type: Collaborative project (generic)


Related news articles:

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...