euHeart

Cardiovascular disease (CVD) has a significant impact on the European society in terms of mortality, morbidity and allied healthcare costs. The opportunity of multi-scale modelling spanning, sub-cellular level up to whole heart is to improve CVD outcomes by providing a consistent, biophysically-based framework for the integration of the huge amount of fragmented and inhomogeneous data currently available. However, multi-scale models have not yet been translated into clinical environments mainly due to the difficulty of personalising biophysical models. The challenge of the euHeart project is to directly address this need by combining novel ICT technologies with integrative multi-scale computational models of the heart in clinical environments to improve diagnosis, treatment planning and interventions for CVD.

To meet this challenge we will bring together leading European physiological modelling and cardiac groups to develop, integrate and clinically validate patient-specific computational models of the cardiac physiology and disease-related processes. The main outcome of euHeart will be an open source framework for the description and representation of normal and pathological multi-scale and multi-physics cardiovascular models, using the international encoding standards. In addition, a library of innovative tools for the execution of the biophysical simulations, the personalisation of the models and the automated analysis of multi-modal images are developed.

Evidence of clinical benefit will be collected to quantify potential impact for a number of significant CVD's namely, heart failure, cardiac rhythm disorder, coronary artery disease and valvular and aortic diseases. Each of the selected clinical applications provides a complementary focus for the resulting integrated model of cardiac fluid-electro-mechanical function. The consortium contains a mix of academic leadership, clinical sites, and industrial partners ensuring exploitation of the wealth of models.

For further information, please visit:
http://www.euheart.org

Project co-ordinator:
Philips Technologie GmbH

Partners:

  • INRIA, Institut National de Recherche en Informatique et en Automatique
  • King's College London
  • Academisch Medisch Centrum bij de Universiteit van Amsterdam
  • Polydimensions GmbH
  • Universitat Pompeu Fabra
  • The University of Sheffield
  • Hospital Clinico San Carlos de Madrid Insalud
  • Philips Iberica S.A.
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Volcano Europe SA/NV
  • The Chancellor, Master and Scholars of the University of Oxford
  • HemoLab B.V.
  • Deutsche Krebsforschungszentrum (DKFZ)
  • Berlin Heart GmbH
  • Universität Karlsruhe (Technische Hochschule)
  • Philips Medical Systems Nederland BV

Timetable: from 06/2008 – to 05/2012

Total cost: € 19.053.465

EC funding: € 13.900.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

NHS and Patients to Benefit from New Par…

IMS MAXIMS and Secure Exchange Solutions have announced a partnership to offer mobile, secure and cost-effective provider-to-provider and provider-to-patient communications to NHS organisations, GP practices and patients.

International Master's in Digital Health

The Master of Science (M.Sc.) in Medical Informatics (MMI) at European Campus Rottal-Inn (ECRI) in Pfarrkirchen - a branch of the Deggendorf University of Applied Sciences (THD - Technische Hochschule...

Digital Medicine: The Opportunities and …

9 - 11 April 2019, Berlin, Germany. Be it preventive healthcare for dementia using intuitive apps, anonymous hospital hygiene inspections using IoT sensors, or VR applications that let hemiplegic patients live...

Highland Marketing Forms Alliance with E…

An alliance between Highland Marketing and Experiential HealthTech will be announced at this year's Digital Health Rewired, with both companies exhibiting from stand B14. Highland Marketing is a full-service marketing...

Google Research Shows How AI can Make Op…

As artificial intelligence continues to evolve, diagnosing disease faster and potentially with greater accuracy than physicians, some have suggested that technology may soon replace tasks that physicians currently perform. But...

Virtual Reality could be Used to Treat A…

Playing games in virtual reality (VR) could be a key tool in treating people with neurological disorders such as autism, schizophrenia and Parkinson's disease. The technology, according to a recent...

Open Call SC1-HCC-02-2019: Support for t…

In the past years several open service platforms for Active and Healthy Ageing domains have been developed, originating from the medical, independent living, and IoT domain. These platforms aim at...

Have an Innovative Digital Health Soluti…

G4A Partnerships are a great opportunity to get your solution in front of Bayer executives and decision makers. All the applications will be reviewed by key stakeholders who have global...

The Moore Blatch Silicon Cup Opens for E…

This year's Moore Blatch Silicon Cup has been launched and is now open for IT companies to enter. The event takes place over 26 - 27 September on the Isle...

MEDICA 2019: Clear Focus on Future Topic…

18 - 21 November 2019, Düsseldorf, Germany. As a result of the final phase of exhibitor registrations for the world’s leading medical trade fare MEDICA 2019 in Düsseldorf, one thing is...

Artificial Intelligence Sheds New Light …

What happens inside a cell when it is activated, changing, or responding to variations in its environment? Researchers from the VIB-UGent Center for Inflammation Research have developed a map of...