preDiCT

Many drugs fail to reach the market because of side effects on the heart. The principal objective of this proposal is to create an advanced computational technology for in silico assessment of the efficacy and safety of specific drugs [ICT-2007.5.3(c) (3)], i.e. an open environment comprising validated computational models, tools and numerical methods that will enable simulations of drug actions on the electrophysiology of the human heart.

Such simulations will involve modelling of drug interactions at the molecular and cellular level, will extend current technology to enable prediction of the effects of those interactions on the dynamics of the whole heart, and will lead to an understanding of how genetic factors can be used to assess patient-specific risk profiles. This requires a multi-level systems approach, based on multi-scale, multi-physics methods, including computations on adaptive spatial grids and multi-grid time integration. Computations on realistic models at appropriate spatial and temporal scales are currently not feasible, so we will investigate new algorithms and their implementation on high-performance platforms, including a new generation of petaflop computers, to achieve 'faster than real-time' simulation.

These tools form part of the infrastructure required to simulate the physiology of major organ systems, thereby contributing to the goal of creating the Virtual Physiological Human (VPH) [ICT-2007.5.3]. The balanced team in this project, including founders of the Human Physiome Project, has decades of experience in the experimental study and modelling of the electrophysiology and mechanics of the heart, while pharmaceutical industry partners bring deep understanding of the mechanisms of drug actions. The results will demonstrate the value of the VPH initiative to fundamental scientific understanding of the heart, with major economic and clinical impacts through accelerated drug development, approval and use.

For further information, please visit:
http://www.vph-predict.eu

Project co-ordinator:
The Chancellor, Master and Scholars of the University of Oxford

Partners:

  • F. Hoffmann-La Roche AG
  • Szegedi Tudományegyetem
  • Fujitsu Laboratories of Europe Limited
  • Glaxo Smithkline Research and Development
  • Universidad Politécnica de Valencia
  • Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna
  • Novartis Pharma AG
  • Aureus Pharma SA

Timetable: from 06/2008 – to 05/2011

Total cost: € 5.545.692

EC funding: € 4.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

MRI Predict Intelligence Levels in Child…

A group of researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) took 4th place in the international MRI-based adolescent intelligence prediction competition. For the first...

Finally, Machine Learning Interprets Gen…

In this age of "big data," artificial intelligence (AI) has become a valuable ally for scientists. Machine learning algorithms, for instance, are helping biologists make sense of the dizzying number...

Pros and Cons of Mommy Mobile Apps

Mobile phone apps are increasingly being used to support breastfeeding decisions - sometimes at a cost, a Flinders University study indicates. The objective approach of most infant feeding (IF) apps...

Artificial Intelligence (AI) can Detect …

A new technology for detecting low glucose levels via ECG using a non-invasive wearable sensor, which with the latest Artificial Intelligence can detect hypoglycaemic events from raw ECG signals has...

Philips Expands its Range of Consumer-Fo…

At CES 2020, Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced its expansion of personalized consumer health solutions that help shape the industry of...

Bayer and Exscientia Collaborate to Leve…

Bayer and Exscientia Ltd., a UK-based Artificial Intelligence (AI)-driven drug discovery company, have entered into a three-year, multi-target collaboration. The partners will work on early research projects combining Exscientia's proprietary...

Gloucestershire Hospitals Announce Signi…

Gloucestershire Hospitals NHS Foundation Trust has gone live with the first elements of its Allscripts Sunrise electronic patient record just five months after signing a contract with the company. The trust...

A Better Testing Method for Patients wit…

Parkinson's disease is a neurodegenerative disorder that manifests through symptoms such as tremor, slow movements, limb rigidity and gait and balance problems. As such, nearly all diagnostic testing revolves around...

Smartphone Cameras can Speed Up Urinary …

Biological Engineers at the University of Bath have developed a test that could help medics quickly diagnose urinary tract infections (UTIs), using a normal smartphone camera. Similar in principle to...

Siemens Healthineers Celebrates 125 Year…

Today it's commonplace, but at the time it was a medical-technical revolution - the discovery of X-rays by Wilhelm Conrad Röntgen 125 years ago in Würzburg. His discovery on November...