preDiCT

Many drugs fail to reach the market because of side effects on the heart. The principal objective of this proposal is to create an advanced computational technology for in silico assessment of the efficacy and safety of specific drugs [ICT-2007.5.3(c) (3)], i.e. an open environment comprising validated computational models, tools and numerical methods that will enable simulations of drug actions on the electrophysiology of the human heart.

Such simulations will involve modelling of drug interactions at the molecular and cellular level, will extend current technology to enable prediction of the effects of those interactions on the dynamics of the whole heart, and will lead to an understanding of how genetic factors can be used to assess patient-specific risk profiles. This requires a multi-level systems approach, based on multi-scale, multi-physics methods, including computations on adaptive spatial grids and multi-grid time integration. Computations on realistic models at appropriate spatial and temporal scales are currently not feasible, so we will investigate new algorithms and their implementation on high-performance platforms, including a new generation of petaflop computers, to achieve 'faster than real-time' simulation.

These tools form part of the infrastructure required to simulate the physiology of major organ systems, thereby contributing to the goal of creating the Virtual Physiological Human (VPH) [ICT-2007.5.3]. The balanced team in this project, including founders of the Human Physiome Project, has decades of experience in the experimental study and modelling of the electrophysiology and mechanics of the heart, while pharmaceutical industry partners bring deep understanding of the mechanisms of drug actions. The results will demonstrate the value of the VPH initiative to fundamental scientific understanding of the heart, with major economic and clinical impacts through accelerated drug development, approval and use.

For further information, please visit:
http://www.vph-predict.eu

Project co-ordinator:
The Chancellor, Master and Scholars of the University of Oxford

Partners:

  • F. Hoffmann-La Roche AG
  • Szegedi Tudományegyetem
  • Fujitsu Laboratories of Europe Limited
  • Glaxo Smithkline Research and Development
  • Universidad Politécnica de Valencia
  • Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna
  • Novartis Pharma AG
  • Aureus Pharma SA

Timetable: from 06/2008 – to 05/2011

Total cost: € 5.545.692

EC funding: € 4.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Artificial Intelligence Predicts Dementi…

Imagine if doctors could determine, many years in advance, who is likely to develop dementia. Such prognostic capabilities would give patients and their families time to plan and manage treatment...

Using Machine Learning to Improve Patien…

Doctors are often deluged by signals from charts, test results, and other metrics to keep track of. It can be difficult to integrate and monitor all of these data for...

Researchers Uncover Security Issues with…

Use caution when entering personal health information into a convenient app on your mobile device, because not all apps are created equal when it comes to protecting your privacy, warns...

Self-Powered Paper-Based 'SPEDs' may Lea…

A new medical-diagnostic device made out of paper detects biomarkers and identifies diseases by performing electrochemical analyses - powered only by the user's touch - and reads out the color-coded...

New App Uses Smartphone Selfies to Scree…

Pancreatic cancer has one of the worst prognoses - with a five-year survival rate of 9 percent - in part because there are no telltale symptoms or non-invasive screening tools...

Nurses Becoming e-Nurses by Using Patien…

The ambitions of NHS Digital’s e-nursing week and the Royal College of Nursing's (RCN) 'Every nurse an e-nurse' campaign are being realised by nurses across the UK, who are seeing...

New Diagnostic Tool Spots First Signs of…

Researchers have developed the first tool that can diagnose Parkinson's disease when there are no physical symptoms, offering hope for more effective treatment of the condition. There are currently no...

Stroke Patient Improvement with a Brain-…

University of Adelaide researchers have shown that it is possible for stroke patients to improve motor function using special training involving connecting brain signals with a computer. In a "proof-of-principle...

eHealth Hub Call: Lean Startup Academy

The Lean Startup Academy is an unique opportunity to mature your business by systematically testing your ideas against the market with the support of experts. The course will help you...

Google Glass App Helps Autistic Children…

A prototype software application, to be used with the optical head-mounted display Google Glass, has been designed as a social-skills coach for children with autism spectrum disorder (ASD). A new...

Philips Innovations at IFA 2017 Put Cons…

At this year's Internationale Funkausstellung (IFA) in Berlin, Germany, Royal Philips (NYSE: PHG, AEX: PHIA) showcases new products and services that empower consumers to take an active role in managing...