New International eHealth Neuro-Musculo-Skeletal Physiome Project

Neuro-Musculo-Skeletal Physiome, or NMS Physiome for short, officially started on January 27th, 2010. This is a VPH Internationalisation cooperation project between the European integrated project VPHOP, and the United States NIH Center for physics-based Simulation of Biological Structures, SIMBIOS.

VPHOP and SIMBIOS are two of the largest research projects worldwide developing technology for personalised, predictive, and integrative musculoskeletal medicine. These two projects are targeting the same strategic objective and developing highly complementary technologies. This unique condition creates an compelling opportunity for international collaboration, one which would dramatically increase the international impact of the work being done by the VPHOP project, and foster global cooperation on one of the grand challenges of biomedical research.

VPHOP, formed by a consortium of 19 partner institutions led by the Rizzoli Orthopaedic Institute, is developing the next generation of health technologies to fight osteoporosis. As part of this endeavour, the personalised modelling of the patient's neuro-musculo-skeletal system is essential.

SIMBIOS provides infrastructure, software, and training to help biomedical researchers understand biological form and function as they create novel drugs, synthetic tissues, medical devices, and surgical interventions. The cluster of projects connected to the SIMBIOS center is investigating a wide scale of biological structures - from molecules to organisms. Driving biological problems include RNA folding, protein folding, myosin dynamics, cardiovascular dynamics, and neuromuscular biomechanics. In particular, the team of one of the two Principal Investigators of SIMBIOS, Scott Delp, based at Stanford University, focuses on the accurate modelling of the neuro-musculo-skeletal system.

In addition to the Rizzoli Orthopedic Institute and to Stanford University, the NMS Physiome project will see the participation of Empirica, SCS, and the University of Bedfordshire, all members of the VPHOP consortium.

NMS Physiome three-years activity will revolve primarily around three objectives:

  • Integrate the community web services developed by VPHOP and SIMBIOS to make teamwork across the two projects easier.
  • Integrate the software tools, MAF and OpenSIM/FEBio, developed in the two projects in order to obtain a better collective tool chest for neuromusculoskeletal modelling.
  • Combining the latest research achievements of the two consortia to better face the grand challenges the multiscale modelling of the musculoskeletal system poses, such as the efficient multiscale modelling of the musculoskeletal system, the creation of accurate patient-specific models from clinically available data, and the development of modelling methods to cope with the probabilistic nature of the neuromotor function.

For further information, please visit:
http://www.biomedtown.org/biomed_town/nmsphysiome/

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...