Success Stories: The Osteoporotic Virtual Physiological Human

Osteoporosis is becoming one of the most serious diseases for the European ageing population: nearly four million osteoporotic bone fractures cost the European health system more than €30 billion per year, and kill 250,000 elders for related complications; this figure could double by 2050. Today a woman has the same probability to die of a hip fracture than of breast cancer. The aim of VPHOP project is to develop a novel multiscale modelling technology that could fight osteoporosis by predicting the bone risk of fracture more effectively than the current Standard of Care. With VPHOP, the European Virtual Physiological Human Initiative exhibits the potential to address today's socio-economic challenges and gain technologically competitive advantages for Europe.

In the last two years 50,000 individuals were forced to walk, stair climb, jump, trip, and fall while a groups of researchers observed, measured, probed and poked them as they fractured their hips, their bones and spine. Sounds immoral? It is not; it is virtual! This huge simulation required a truly powerful computer, an IBM PLX supercomputer with the power of 2290 personal computers. After two days of intense calculations the supercomputer predicted that every year in the general population of Italian we should expect two spontaneous fractures for each thousand citizens; this is a very accurate prediction, according to the recent epidemiological data study that analysed the incidence of spontaneous fracture in the general Italian population. This is already a success story in itself and for the Virtual Physiological Human initiative at large. It proves that is possible to build computer models that account for very many different processes that form a disease all together, and that can be personalised with the data of each individual to make accurate predictions that can be used to diagnose the disease and plan its most appropriate personalised treatment. The heart of the VPHOP hypermodel beats in Bologna (IT) where researchers at the Rizzoli Orthopaedic Institute and at Super Computing Solutions centre developed the first prototype of what will become the VPHOP hypermodel. In this first prototype the single models are not directly integrated, but each model is run separately, and the various results are combined using a probabilistic model of the disease.

The whole body models developed at Charité Universitätsmedizin Berlin (DE) for 90 patients that were examined in depth using some of the most advanced imaging and neuromotor analysis technologies available worldwide developed at provided a database of loads acting on the skeleton during various daily activities, for a wide range of body weights, heights, ages, life styles, etc.

Researchers at the Technische Universiteit Eindhoven (Netherlands), in collaboration with Philips Medical Systems Nederland (NL), used high resolution images of the bone tissue to build a computer model capable of predicting for each patient the strength of the tissue that form each bone of the skeleton.

The team at Eidgenössische Technische Hochschule Zuerich (CH) developed a computer model capable of predicting how the bone tissue will change over time due to the progression of the disease, and how this progression can be modified by different pharmacological treatment, whereas the Universitaet Bern (CH) are exploring the effect of other type of treatment for patients at very high risk.

Societal and economic Impact
The VPHOP Clinical Decision-Support Model already started demonstrating how, for the first time, a highly sensitive bone-fractureprediction is realisable, i.e. personalised, predictive medicine at its best. This will change fundamentally the clinical approach to diagnosing and treating osteoporotic fracture and, respectively, establish a highly innovative global benchmark process for clinical practice in this medical domain. To substantiate these expectations, based on an innovative evaluation methodology, the likely impact of the new clinical intervention on the real-life clinical setting has been assessed, guaranteeing early application in the hospital environment, thereby also early industrial exploitation and sustainable business models.

For further information, please visit:
http://www.vphop.eu

Related news articles:

ICT for Health,
European Commission - Information society and Media DG,
Office: BU31 01/79 B-1049 Brussels
Tel: +32 (0)2 296 41 94
Fax: 02 296 01 81
http://ec.europa.eu/information_society/ehealth

About the Osteoporotic Virtual Physiological Human (VPHOP)
VPHOP is a Collaborative Integrated Project that is developing simulation-based technology to predict the risk of bone fracture in osteoporosis patients. Co-funded by the European Commission as part of the Seventh Framework Program. The project runs for four years starting from September 2008. Coordinated by Rizzoli Orthopaedic Institute, the Project Consortium gathers 19 European Organisations based in Italy, The Netherlands, Germany, Switzerland, Belgium, France, United Kingdom, Sweden, and Iceland.

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...