Research

Bioprinting Has Promising Future

Writing in the journal Science, Professor Derby of The School of Materials, looks at how the concept of using printer technology to build structures in which to grow cells, is helping to regenerate tissue. Both inkjet and laser printer technology can be used to build the 3D scaffolds that cells can be grown in and also place the cells in these structures simultaneously. Professor Derby explains how bioprinting works: "Inkjet technology places the structure's material in small droplets, which then solidify. More droplets are then placed on top of the previous ones in a specific pattern. The structure is built using this method which is generally referred to as additive manufacture.

"Laser printing uses light to solidify the structure's material layer upon layer. These methods have allowed us to develop very complex scaffolds which better mimic the conditions inside the body."

The scaffold provides a surface for the cells to adhere, thrive and multiply. Both the scaffold material, composition and its internal architecture control the behaviour and well-being of the cells inside.

In his review article Professor Derby looks at experiments where porous structures have been made through bioprinting. They are then placed in the body to help act as a scaffold to encourage cell growth. The cells colonize the structure and it either dissolves or becomes part of the body.

This type of treatment can help patients suffering from problems such as cavity wounds. Clinical trials are currently taking place around the world to perfect this technology, and Professor Derby says it is moving towards becoming an established form of science.

Professor Derby also looks at how stem cells are being grown in printed structures that have been impregnated with certain chemicals. The chemicals are inserted during the printing process and can determine the type of cell the stem cells develop into. For example stem cells could be programmed to become cells that make up bone tissue or cartilage.

But there are limitations to the technology which is holding back breakthroughs such as the ability to grow an entire organ. Studies have found that it is very difficult to actually print the cells at the same time as making the structure that will house them. The stress on the cell as it goes through both the inkjet and laser process can damage the cell membrane. Cell survival rates have also been variable, ranging from between 40 to 95%.

The technology is also some way off progressing from an experimental platform to clinical practice. Whilst scaffolds are being clinically trialled, actually transplanting cells grown in an external structure into a patient is a more advanced process. It is still not possible at present to guarantee a consistent quality, which is required by medical device regulations.

But research is being carried out to grow external cells into tissue, such as a patch of skin, and transplant that into a patient. Professor Derby is currently working with Ear, Nose and Throat surgeons at the Manchester Royal Infirmary. He wants to use bioprinting to print cells without using a scaffold. The printed cells form a sheet that can be used for grafts inside the body, for example in the mouth or nose.

Professor Derby says: "It is very difficult to transplant even a small patch of tissue to repair the inside of the nose or mouth. Current practice, to transplant the patient's skin to these areas, is regarded as unsatisfactory because the transplants do not possess mucous generating cells or salivary glands. We are working on techniques to print sheets of cells that are suitable for implantation in the mouth and nose."

One area which Professor Derby's review article highlights for the future is the ability to grow structures which can model cancerous tumours. These could then be used to test new drugs, which it's hoped will advance the search for more effective treatments.

Writing the review article has encouraged Professor Derby that there is a strong future for bioprinting and whilst growing organs is still a long way off, the advances being made in this area are very promising.

Most Popular Now

Open Call SC1-PM-07-2017: Promoting…

Proposals should develop population-oriented primary prevention interventions to promote mental well-being of young people and assess them for their effectiveness. The ...

Read more

Online Therapy Effective at Treatin…

Doctors from the University of Pittsburgh showed that providing an online computerized cognitive behavioral therapy (CCBT) program both alone and in combination with Inte...

Read more

Doctors 2.0 & YOU 2016

26 - 27 May, Paris, France. Doctors 2.0 & YOU, the International Digital Health Congress that offers to every health professionals the opportunity to understand how to u...

Read more

Evar Guidance Engine Software Makes…

At the Charing Cross Congress in London, Siemens Healthcare presents the Evar Guidance Engine software application package to support minimally invasive treatment of aort...

Read more

A Personalized Virtual Heart Predic…

When electrical waves in the heart run amok in a condition called arrhythmia, sudden death can occur. To save the life of a patient at risk, doctors currently implant a s...

Read more

Philips Leads Large Scale eHealth I…

Royal Philips (NYSE: PHG; AEX: PHIA) and a consortium of leading European healthcare regions, companies, universities and hospitals today announced the start of the first...

Read more

New Tool Measures Lung Function ove…

Most people in the developing world who have asthma, cystic fibrosis or other chronic lung diseases have no way to measure how well their lungs are functioning outside of...

Read more

Ingestible Robot Operates in Simula…

In experiments involving a simulation of the human esophagus and stomach, researchers at MIT, the University of Sheffield, and the Tokyo Institute of Technology have demo...

Read more

Grants4Apps Accelerator 2016: You I…

The Grants4Apps (G4A) Accelerator developed by Bayer invites health IT and technology startups to apply for the program's 2016 edition. This year, Bayer looks primarily i...

Read more

Joined-Up Health & Care Confere…

InterSystems, a global leader in health information technology, will bring pioneers from across the world to Sutton Coldfield in May, to share ground-breaking stories on ...

Read more

Smartphone App for Monitoring Heart…

A smartphone app that tracks palpitations in heart patients provides comparable performance to the 14-day event monitors that are the current standard of care, according ...

Read more

New Photonics Technique to Eliminat…

A team of experts from around Europe has come together to develop a portable device with a hand-held probe that will dramatically reduce invasive diagnostic and therapeut...

Read more

Digest Newsletter

Subscribe to our weekly Newsletter and stay updated on the latest eHealth News. Subscribe now, it's free!
© eHealthNews.eu 2006 - 2016