Bioprinting Has Promising Future

Writing in the journal Science, Professor Derby of The School of Materials, looks at how the concept of using printer technology to build structures in which to grow cells, is helping to regenerate tissue. Both inkjet and laser printer technology can be used to build the 3D scaffolds that cells can be grown in and also place the cells in these structures simultaneously. Professor Derby explains how bioprinting works: "Inkjet technology places the structure's material in small droplets, which then solidify. More droplets are then placed on top of the previous ones in a specific pattern. The structure is built using this method which is generally referred to as additive manufacture.

"Laser printing uses light to solidify the structure's material layer upon layer. These methods have allowed us to develop very complex scaffolds which better mimic the conditions inside the body."

The scaffold provides a surface for the cells to adhere, thrive and multiply. Both the scaffold material, composition and its internal architecture control the behaviour and well-being of the cells inside.

In his review article Professor Derby looks at experiments where porous structures have been made through bioprinting. They are then placed in the body to help act as a scaffold to encourage cell growth. The cells colonize the structure and it either dissolves or becomes part of the body.

This type of treatment can help patients suffering from problems such as cavity wounds. Clinical trials are currently taking place around the world to perfect this technology, and Professor Derby says it is moving towards becoming an established form of science.

Professor Derby also looks at how stem cells are being grown in printed structures that have been impregnated with certain chemicals. The chemicals are inserted during the printing process and can determine the type of cell the stem cells develop into. For example stem cells could be programmed to become cells that make up bone tissue or cartilage.

But there are limitations to the technology which is holding back breakthroughs such as the ability to grow an entire organ. Studies have found that it is very difficult to actually print the cells at the same time as making the structure that will house them. The stress on the cell as it goes through both the inkjet and laser process can damage the cell membrane. Cell survival rates have also been variable, ranging from between 40 to 95%.

The technology is also some way off progressing from an experimental platform to clinical practice. Whilst scaffolds are being clinically trialled, actually transplanting cells grown in an external structure into a patient is a more advanced process. It is still not possible at present to guarantee a consistent quality, which is required by medical device regulations.

But research is being carried out to grow external cells into tissue, such as a patch of skin, and transplant that into a patient. Professor Derby is currently working with Ear, Nose and Throat surgeons at the Manchester Royal Infirmary. He wants to use bioprinting to print cells without using a scaffold. The printed cells form a sheet that can be used for grafts inside the body, for example in the mouth or nose.

Professor Derby says: "It is very difficult to transplant even a small patch of tissue to repair the inside of the nose or mouth. Current practice, to transplant the patient's skin to these areas, is regarded as unsatisfactory because the transplants do not possess mucous generating cells or salivary glands. We are working on techniques to print sheets of cells that are suitable for implantation in the mouth and nose."

One area which Professor Derby's review article highlights for the future is the ability to grow structures which can model cancerous tumours. These could then be used to test new drugs, which it's hoped will advance the search for more effective treatments.

Writing the review article has encouraged Professor Derby that there is a strong future for bioprinting and whilst growing organs is still a long way off, the advances being made in this area are very promising.

Most Popular Now

Augmented Reality Visor to Dramatically …

Employing new photonics technology, European scientists are developing a new Augmented Reality surgical visor in a bid to improve accuracy of interventions, showing anaesthetic and medical data while superimposing a...

Read more

Interactive Health Apps May Inspire Heal…

Just like real doctors and nurses, online health tools with good - but controlled - communication skills can promote healthier lifestyles, according to researchers. However, if their tone is conversational...

Read more

Call for Papers: EHB 2017 - IEEE Interna…

22 - 24 June 2017, Sinaia, Romania. The 6-th edition of the International Conference on e-Health and Bioengineering, EHB 2017, will take place in the city of Sinaia, Romania. This year...

Read more

UK and Italian Health Tech Firms to Help…

Data sharing ambitions set out in newly published sustainability and transformation plans (STPs) have been given a boost by a new strategic partnership between data management specialist Stalis and Italy's...

Read more

From Health Apps to Nursing Robots - A G…

25 - 27 April 2017, Berlin, Germany. Around the world the subject of e-Health is steadily gaining in importance, whether it involves electronic patient files, online video consultations or any of...

Read more

Philips Teams Up with German Startup One…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced a partnership agreement with German digital health company Onelife Health to jointly develop innovative connected health...

Read more

EU eHealth Competition 2017

The eHealth Competition is an initiative that rewards the best eHealth / mHealth solutions produced by European SMEs (Small and Medium Enterprises). Its objective is to support business success of...

Read more

Philips and LabPON Plan to Create World…

Royal Philips (NYSE: PHG, AEX: PHIA) and LabPON, the first clinical laboratory to transition to 100% histopathology digital diagnosis, have announced its plans to create a digital database of massive...

Read more

Virtual Reality Cognitive Training Game …

Greek researchers demonstrated the potential of a self-administered virtual supermarket cognitive training game for remotely detecting mild cognitive impairment (MCI), without the need for an examiner, among a sample of...

Read more

Technology Boost for Health and Social C…

Health and social care organisations aiming to be fully compliant with the government’s Personalised Health and Care 2020 plan, can now access electronic health record (EHR) and healthcare integration technologies...

Read more

Agfa HealthCare's Health Management Pla…

Agfa HealthCare announces today that its health management platform, including the XERO universal image viewer, has been selected to support the joint Radiotherapy Treatment Project of the Saolta University Health...

Read more

Philips Introduces Advanced Radiology So…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, has unveiled new advanced radiology solutions at the 2017 European Congress of Radiology (ECR). In response to today's...

Read more
(HEALTH IT) SPACE - Take a look at who has just Joined