Brain Imaging Headband Measures How Our Minds Align when We Communicate

Great ideas so often get lost in translation - from the math teacher who can't get through to his students, to a stand-up comedian who bombs during an open mic night. But how can we measure whether our audiences understand what we're trying to convey? And better yet, how can we improve that exchange?

Drexel University biomedical engineers, in collaboration with Princeton University psychologists, are using a wearable brain-imaging device to see just how brains sync up when humans interact. It is one of many applications for this functional near-infrared spectroscopy (or fNIRS) system, which uses light to measure neural activity during real-life situations and can be worn like a headband.

Published in Scientific Reports, a new study shows that the fNIRS device can successfully measure brain synchronization during conversation. The technology can now be used to study everything from doctor-patient communication, to how people consume cable news.

"Being able to look at how multiple brains interact is an emerging context in social neuroscience," said Hasan Ayaz, PhD, an associate research professor in Drexel's School of Biomedical Engineering, Science and Health Systems, who led the research team. "We live in a social world where everybody is interacting. And we now have a tool that can give us richer information about the brain during everyday tasks - such as natural communication - that we could not receive in artificial lab settings or from single brain studies."

The current study is based on previous research from Uri Hasson, PhD, associate professor at Princeton University, who has used functional Magnetic Resonance Imaging (fMRI) to study the brain mechanisms underlying the production and comprehension of language. Hasson has found that a listener's brain activity actually mirrors the speaker's brain when he or she is telling story about a real-life experience. And higher coupling is associated with better understanding.

However, traditional brain imaging methods have certain limitations. In particular, fMRI requires subjects to lie down motionlessly in a noisy scanning environment. With this kind of set-up, it is not possible to simultaneously scan the brains of multiple individuals who are speaking face-to-face.

This is why the Drexel researchers sought to investigate whether the portable fNIRS system could be a more effective approach to probe the brain-to-brain coupling question in natural settings.

For their study, a native English speaker and two native Turkish speakers told an unrehearsed, real-life story in their native language. Their stories were recorded and their brains were scanned using fNIRS. Fifteen English speakers then listened to the recording, in addition to a story that was recorded at a live storytelling event.

The researchers targeted the prefrontal and parietal areas of the brain, which include cognitive and higher order areas that are involved in a person's capacity to discern beliefs, desires and goals of others. They hypothesized that a listener's brain activity would correlate with the speaker's only when listening to a story they understood (the English version). A second objective of the study was to compare the fNIRS results with data from a similar study that had used fMRI, in order to compare the two methods.

They found that when the fNIRS measured the oxygenation and deoxygenation of blood cells in the test subject's brains, the listeners' brain activity matched only with the English speakers. These results also correlated with the previous fMRI study.

This new research supports fNIRS as a viable future tool to study brain-to-brain coupling during social interaction. The system can be used to offer important information about how to better communicate in many different environments, including classrooms, business meetings, political rallies and doctors' offices.

"This would not be feasible with fMRI. There are too many challenges," said Banu Onaral, PhD, the H. H. Sun Professor in the School of Biomedical Engineering, Science and Health Systems. "Now that we know fNIRS is a feasible tool, we are moving into an exciting era when we can know so much more about how the brain works as people engage in everyday tasks."

This study was conducted at the Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) Collaborative, a multi-disciplinary brain observatory at Drexel University.

Liu Y, Piazza EA, Simony E, Shewokis PA, Onaral B, Hasson U, Ayaz H.
Measuring speaker-listener neural coupling with functional near infrared spectroscopy.
Sci Rep. 2017 Feb 27;7:43293. doi: 10.1038/srep43293.

Most Popular Now

Artificial Intelligence Predicts Dementi…

Imagine if doctors could determine, many years in advance, who is likely to develop dementia. Such prognostic capabilities would give patients and their families time to plan and manage treatment...

Using Machine Learning to Improve Patien…

Doctors are often deluged by signals from charts, test results, and other metrics to keep track of. It can be difficult to integrate and monitor all of these data for...

Researchers Uncover Security Issues with…

Use caution when entering personal health information into a convenient app on your mobile device, because not all apps are created equal when it comes to protecting your privacy, warns...

Self-Powered Paper-Based 'SPEDs' may Lea…

A new medical-diagnostic device made out of paper detects biomarkers and identifies diseases by performing electrochemical analyses - powered only by the user's touch - and reads out the color-coded...

New App Uses Smartphone Selfies to Scree…

Pancreatic cancer has one of the worst prognoses - with a five-year survival rate of 9 percent - in part because there are no telltale symptoms or non-invasive screening tools...

Nurses Becoming e-Nurses by Using Patien…

The ambitions of NHS Digital’s e-nursing week and the Royal College of Nursing's (RCN) 'Every nurse an e-nurse' campaign are being realised by nurses across the UK, who are seeing...

New Diagnostic Tool Spots First Signs of…

Researchers have developed the first tool that can diagnose Parkinson's disease when there are no physical symptoms, offering hope for more effective treatment of the condition. There are currently no...

Stroke Patient Improvement with a Brain-…

University of Adelaide researchers have shown that it is possible for stroke patients to improve motor function using special training involving connecting brain signals with a computer. In a "proof-of-principle...

eHealth Hub Call: Lean Startup Academy

The Lean Startup Academy is an unique opportunity to mature your business by systematically testing your ideas against the market with the support of experts. The course will help you...

Google Glass App Helps Autistic Children…

A prototype software application, to be used with the optical head-mounted display Google Glass, has been designed as a social-skills coach for children with autism spectrum disorder (ASD). A new...

Philips Innovations at IFA 2017 Put Cons…

At this year's Internationale Funkausstellung (IFA) in Berlin, Germany, Royal Philips (NYSE: PHG, AEX: PHIA) showcases new products and services that empower consumers to take an active role in managing...