Facial Recognition Software Helps Diagnose Rare Genetic Disease

Researchers with the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, and their collaborators, have successfully used facial recognition software to diagnose a rare, genetic disease in Africans, Asians and Latin Americans. The disease, 22q11.2 deletion syndrome, also known as DiGeorge syndrome and velocardiofacial syndrome, affects from 1 in 3,000 to 1 in 6,000 children. Because the disease results in multiple defects throughout the body, including cleft palate, heart defects, a characteristic facial appearance and learning problems, healthcare providers often can't pinpoint the disease, especially in diverse populations.

The goal of the study, published March 23, 2017, in the American Journal of Medical Genetics, is to help healthcare providers better recognize and diagnose DiGeorge syndrome, deliver critical, early interventions and provide better medical care.

"Human malformation syndromes appear different in different parts of the world," said Paul Kruszka, M.D., M.P.H., a medical geneticist in NHGRI's Medical Genetics Branch. "Even experienced clinicians have difficulty diagnosing genetic syndromes in non-European populations."

The researchers studied the clinical information of 106 participants and photographs of 101 participants with the disease from 11 countries in Africa, Asia and Latin America. The appearance of someone with the disease varied widely across the groups.

Using facial analysis technology, the researchers compared a group of 156 Caucasians, Africans, Asians and Latin Americans with the disease to people without the disease. Based on 126 individual facial features, researchers made correct diagnoses for all ethnic groups 96.6 percent of the time.

Marius George Linguraru, D.Phil., M.A., M.B., an investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children's National Health System in Washington, D.C., developed the digital facial analysis technology used in the study. Researchers hope to further develop the technology - similar to that used in airports and on Facebook - so that healthcare providers can one day take a cell phone picture of their patient, have it analyzed and receive a diagnosis.

This technology was also very accurate in diagnosing Down syndrome, according to a study published in December 2016. The same team of researchers will next study Noonan syndrome and Williams syndrome, both of which are rare but seen by many clinicians.

DiGeorge syndrome and Down syndrome are now part of the Atlas of Human Malformations in Diverse Populations launched by NHGRI and its collaborators in September 2016. When completed, the atlas will consist of photos of physical traits of people with many different inherited diseases around the world, including Asia, the Indian subcontinent, the Middle East, South America and sub-Saharan Africa. In addition to the photos, the atlas will include written descriptions of affected people and will be searchable by phenotype (a person's traits), syndrome, continental region of residence and genomic and molecular diagnosis. Previously, the only available diagnostic atlas featured photos of patients with northern European ancestry, which often does not represent the characteristics of these diseases in patients from other parts of the world.

"Healthcare providers here in the United States as well as those in other countries with fewer resources will be able to use the atlas and the facial recognition software for early diagnoses," said Maximilian Muenke, M.D., atlas co-creator and chief of NHGRI's Medical Genetics Branch. "Early diagnoses means early treatment along with the potential for reducing pain and suffering experienced by these children and their families."

Kruszka P, Addissie YA, McGinn DE, Porras AR, Biggs E, Share M, Crowley TB, Chung BH, Mok GT, Mak CC, Muthukumarasamy P, Thong MK, Sirisena ND, Dissanayake VH, Paththinige CS, Prabodha LB, Mishra R, Shotelersuk V, Ekure EN, Sokunbi OJ, Kalu N, Ferreira CR, Duncan JM, Patil SJ, Jones KL, Kaplan JD, Abdul-Rahman OA, Uwineza A, Mutesa L, Moresco A, Obregon MG, Richieri-Costa A, Gil-da-Silva-Lopes VL, Adeyemo AA, Summar M, Zackai EH, McDonald-McGinn DM, Linguraru MG, Muenke M.
22q11.2 deletion syndrome in diverse populations.
Am J Med Genet A. 2017 Apr;173(4):879-888. doi: 10.1002/ajmg.a.38199.

Most Popular Now

NHS Staff Punished as 500,000 Rely on Wh…

WhatsApp, Facebook Messenger and other unauthorised instant messaging (IM) apps are being used by approximately 500,000 NHS staff at work, as a growing number turn to consumer tools to communicate...

Call for Abstracts: European Telemedicin…

27 - 29 May 2018, Sitges, Barcelona, Spain. The European Telemedicine Conference 2018 (ETC18) is an interdisciplinary forum for healthcare professionals, directors, managers, and researchers with the intent of bringing together...

conhIT 2018: The stage is Set for Dialog…

17 - 19 April 2018, Berlin, Germany. Finding out about and supporting all aspects of the digital transformation of the healthcare system: that is what this year's conhIT, Europe's largest event...

Smartphone 'Scores' can Help Doctors Tra…

Parkinson's disease, a progressive brain disorder, is often tough to treat effectively because symptoms, such as tremors and walking difficulties, can vary dramatically over a period of days, or even...

Focus on the Digital Transformation - A …

17 - 19 April 2018, Berlin, Germany. How is the digitalisation of the healthcare system affecting the relationship between patients and doctors? What new innovations and solutions does the health IT...

Portable Device Detects Severe Stroke in…

A new device worn like a visor can detect emergent large-vessel occlusion in patients with suspected stroke with 92 percent accuracy, report clinical investigators at the Medical University of South...

Imitation is the Most Sincere Form of Fl…

For every two mobile apps released, one is a clone of an existing app. However, new research published in the INFORMS journal Information Systems Research shows the success of the...

Merck Partners with Medisafe to Help Imp…

Merck, a leading science and technology company, today announced a new collaboration with US-based Medisafe to help its cardiometabolic patients better manage medication intake and adhere to prescribed treatment regimens...

Philips Research-led Big Data Consortium…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, together with its consortium partners, today announced that it has received funding from the EU's Horizon 2020 program...

Smartphone App Performs Better than Trad…

A smartphone application using the phone's camera function performed better than traditional physical examination to assess blood flow in a wrist artery for patients undergoing coronary angiography, according to a...

Deep Learning Transforms Smartphone Micr…

Researchers at the UCLA Samueli School of Engineering have demonstrated that deep learning, a powerful form of artificial intelligence, can discern and enhance microscopic details in photos taken by smartphones...