Modeling the Brain with 'Lego Bricks'

Researchers from the University of Luxembourg, in cooperation with the University of Strasbourg, have developed a computational method that could be used to guide surgeons during brain surgery. Surgeons often operate in the dark. They have a limited view of the surface of the organ, and can typically not see what lies hidden inside. Quality images can routinely be taken prior to the surgery, but as soon as the operation begins, the position of the surgeon's target and risky areas he must avoid, continuously change. This forces practitioners to rely on their experience when navigating surgical instruments to, for example, remove a tumor without damaging healthy tissue or cutting through important blood supplies.

Stéphane Bordas, Professor in Computational Mechanics at the Faculty of Science, Technology and Communication of the University of Luxembourg, and his team have developed methods to train surgeons, help them rehearse for such complex operations and guide them during surgery. To do this, the team develops mathematical models and numerical algorithms to predict the deformation of the organ during surgery and provide information on the current position of target and vulnerable areas. With such tools, the practioner could virtually rehearse a particular operation to anticipate potential complications.

As the brain is a composite material, made up of grey matter, white matter and fluids, the researchers use data from medical imaging, such as MRI to decompose the brain into subvolumes, similar to lego blocks. The colour of each lego block depends on which material it represents: white, grey or fluid. This colour-coded "digital lego brain" consists of thousands of these interacting and deforming blocks which are used to compute the deformation of the organ under the action of the surgeon. The more blocks the researchers use to model the brain, the more accurate is the simulation. However, it becomes slower, as it requires more computing power. For the user, it is therefore important to find the right balance between accuracy and speed when he decides how many blocks to use.

The crucial aspect of Prof Bordas' work is that it allows, for the first time, to control both the accuracy and the computational time of the simulations. "We developed a method that can save time and money to the user by telling them the minimum size these lego blocks should have to guarantee a given accuracy level. For instance, we can say with certainty: if you can accept a ten per cent error range then your lego blocks should be maximum 1mm, if you are ok with twenty percent you could use 5mm elements," he explains. "The method has two advantages: You have an estimation of the quality and you can focus the computational effort only on areas where it is needed, thus saving precious computational time."

Over time, the researchers' goal is to provide surgeons with a solution that can be used during operations, constantly updating the simulation model in real time with data from the patient. But, according to Prof Bordas, it will take a while before this is realized. "We still need to develop robust methods to estimate the mechanical behavior of each lego block representing the brain. We also must develop a user-friendly platform that surgeons can test and tell us if our tool is helpful," he said.

Bui HP, Tomar S, Courtecuisse H, Cotin S, Bordas S.
Real-time Error Control for Surgical Simulation.
IEEE Transactions on Biomedical Engineering, vol.PP, no.99, pp.1-1, doi: 10.1109/TBME.2017.2695587.

Most Popular Now

Zebra Announces Regulatory Approval of i…

Zebra Medical Vision, the leading machine learning imaging analytics company, announces that the company has been granted the CE approval and subsequent release of its Deep Learning Analytics Engine in...

Mind-Controlled Device Helps Stroke Pati…

Stroke patients who learned to use their minds to open and close a device fitted over their paralyzed hands gained some control over their hands, according to a new study...

Philips and Illumina Team Up with Navica…

Royal Philips (NYSE: PHG, AEX: PHIA) and Navican, an Intermountain Healthcare company, today signed an agreement to deploy a precision health informatics solution that will allow hospitals and health systems...

NHS Organisations to Access IMS MAXIMS C…

Award-winning electronic patient record (EPR) provider IMS MAXIMS has announced the availability of its cloud services on the latest iteration of the UK Government's G Cloud Framework. NHS organisations looking...

Boehringer Ingelheim Builds Digital Lab …

With the founding of BI X as independent subsidiary Boehringer Ingelheim will focus on breakthrough innovative digital solutions in healthcare from idea to pilot. The start-up will work closely together...

Artificial Intelligence to Assist in the…

The University of Tampere and TAYS (Tampere University Hospital) Heart Hospital use artificial intelligence (A.I.) technologies developed by VTT Technical Research Centre of Finland in the home care of heart...

Anyone can Become More Curious. Is that …

Merck, a leading science and technology company, today announced the start of an experiment entitled "Anyone can become more curious". Driven by the company’s curiosity initiative, which measured and described...

EC Open Call FETOPEN-01-2016-2017: FET-O…

The successful exploration of new foundations for radically new future technologies requires supporting a large set of early stage, high risk visionary science and technology projects to investigate new ideas...

Home Monitoring of Blood Sugar Did Not I…

Self-monitoring of blood glucose levels in patients with type 2 diabetes who are not treated with insulin did not improve glycemic control or health-related quality of life after one year...

Call for Applications: 2017 Lyfebulb-Nov…

For the second year in a row, Lyfebulb and Novo Nordisk will support international patient entrepreneurs who develop innovative ideas and concepts aimed to positively empower and impact the lives...

New Cellular Imaging Paves Way for Cance…

Researchers at the Universities of York and Leiden have pioneered a technique which uses florescent imaging to track the actions of key enzymes in cancer, genetic disorders and kidney disease...

UK PACS Win for Carestream Announced

West Hertfordshire Hospitals NHS Trust (West Herts) located in the South East of the UK and Carestream have signed and exchanged contracts to replace the Trust's existing PACS with a...