Researchers Develop a Remote-Controlled Cancer Immunotherapy System

A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells. There is a critical need to non-invasively and remotely manipulate cells at a distance, particularly for translational applications in animals and humans, researchers said.

The team developed an innovative approach to use mechanogenetics - a field of science that focuses on how physical forces and changes in the mechanical properties of cells and tissues influence gene expression - for the remote control of gene and cell activations. Researchers used ultrasound to mechanically perturb T cells, and then converted the mechanical signals into genetic control of cells.

In this study, researchers show how their remote-controlled mechanogenetics system can be used to engineer chimeric antigen receptor (CAR)-expressing T cells that can target and kill cancer cells. The engineered CAR-T cells have mechano-sensors and genetic transducing modules that can be remotely activated by ultrasound via microbubble amplification.

"CAR-T cell therapy is becoming a paradigm-shifting therapeutic approach for cancer treatment," said bioengineering professor Peter Yingxiao Wang at the University of California San Diego. "However, major challenges remain before CAR-based immunotherapy can become widely adopted. For instance, the non-specific targeting of CAR-T cells against nonmalignant tissues can be life-threatening. This work could ultimately lead to an unprecedented precision and efficiency in CAR-T cell immunotherapy against solid tumors, while minimizing off-tumor toxicities."

The team brings together the laboratories of professors Wang and Shu Chien, both bioengineering professors at the Jacobs School of Engineering and the Institute of Engineering in Medicine at UC San Diego, in collaboration with professors Kirk Shung of the University of Southern California and Michel Sadelain at Memorial Sloan Kettering Cancer Center in New York. Researchers present their findings in the Jan. 15 issue of the Proceedings of the National Academy of Sciences, with UC San Diego Ph.D. candidate Yijia Pan as the first author.

Researchers found that microbubbles conjugated to streptavidin can be coupled to the surface of a cell, where mechanosensitive Piezo1 ion channels are expressed. Upon exposure to ultrasound waves, microbubbles vibrate and mechanically stimulate Piezo1 ion channels to let calcium ions inside the cell. This triggers downstream pathways, including calcineurin activation, NFAT dephoshorylation and translocation into the nucleus. The nucleus-translocated NFAT can bind to upstream response elements of genetic transducing modules to initiate gene expression of chimeric antigen receptor (CAR) for the recognition and killing of target cancer cells.

Pan Y, Yoon S, Sun J, Huang Z, Lee C, Allen M, Wu Y, Chang Y-J, Sadelain M, Shung KK, Chien S, Wang Y.
Mechanogenetics for the remote and non-invasive control of cancer immunotherapy.
Proc Natl Acad Sci USA, 2017. doi: http://dx.doi.org/10.1073/pnas.1714900115.

Most Popular Now

Gait Assessed with Body-Worn Sensors may…

Body-worn sensors used at home and in clinic by people with mild Alzheimer's to assess walking could offer a cost-effective way to detect early disease and monitor progression of the...

Applications for the G4A Global Accelera…

Founded in 2013 in Berlin initially giving out grants to innovative healthcare apps, G4A Accelerator is now a global program dedicated to helping innovative health & care startups grow and...

Siemens Healthineers Fully on Track to M…

Siemens Healthineers AG has posted good business figures in the first quarter following its successful initial public offering on March 16, 2018. Year-over-year revenue was up four percent at EUR...

How to Build GDPR and HIPAA Compliant He…

The adoption of cloud and mobile technologies in healthcare is disrupting the services delivery models, and responsibilities and risks for involved actors. By their very nature, eHealth applications collect and...

Computers Equal Radiologists in Assessin…

Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led...

The Big Ethical Questions for Artificial…

AI in healthcare is developing rapidly, with many applications currently in use or in development in the UK and worldwide. The Nuffield Council on Bioethics examines the current and potential...

Consultation: Transformation Health and …

The present report provides an analysis of the results of consultation activities carried out by the European Commission in preparation of a Communication on the Transformation of Health and Care...

Novartis Launches FocalView App, Providi…

Novartis announced the launch of its FocalView app, an ophthalmic digital research platform created with ResearchKit. FocalView aims to allow researchers to track disease progression by collecting real-time, self-reported data...

International Masters's in Medical Infor…

The Master of Science Program in Medical Informatics (MMI) at European Campus Rottal-Inn (ECRI)in Pfarrkirchen - a branch of the Deggendorf University of Applied Sciences (THD - Technische Hochschule Deggendorf)...

Data in the EU: Commission Steps Up Effo…

The European Commission is putting forward a set of measures to increase the availability of data in the EU, building on previous initiatives to boost the free flow of non-personal...

Philips Expands its Sleep & Respirat…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced that it has acquired NightBalance, a digital health scale-up company based in the Netherlands, that has...

A New Way to Watch Brain Activity in Act…

It's a neuroscientist's dream: being able to track the millions of interactions among brain cells in animals that move about freely, behaving as they would under natural circumstances. New technology...