Researchers Develop a Remote-Controlled Cancer Immunotherapy System

A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells. There is a critical need to non-invasively and remotely manipulate cells at a distance, particularly for translational applications in animals and humans, researchers said.

The team developed an innovative approach to use mechanogenetics - a field of science that focuses on how physical forces and changes in the mechanical properties of cells and tissues influence gene expression - for the remote control of gene and cell activations. Researchers used ultrasound to mechanically perturb T cells, and then converted the mechanical signals into genetic control of cells.

In this study, researchers show how their remote-controlled mechanogenetics system can be used to engineer chimeric antigen receptor (CAR)-expressing T cells that can target and kill cancer cells. The engineered CAR-T cells have mechano-sensors and genetic transducing modules that can be remotely activated by ultrasound via microbubble amplification.

"CAR-T cell therapy is becoming a paradigm-shifting therapeutic approach for cancer treatment," said bioengineering professor Peter Yingxiao Wang at the University of California San Diego. "However, major challenges remain before CAR-based immunotherapy can become widely adopted. For instance, the non-specific targeting of CAR-T cells against nonmalignant tissues can be life-threatening. This work could ultimately lead to an unprecedented precision and efficiency in CAR-T cell immunotherapy against solid tumors, while minimizing off-tumor toxicities."

The team brings together the laboratories of professors Wang and Shu Chien, both bioengineering professors at the Jacobs School of Engineering and the Institute of Engineering in Medicine at UC San Diego, in collaboration with professors Kirk Shung of the University of Southern California and Michel Sadelain at Memorial Sloan Kettering Cancer Center in New York. Researchers present their findings in the Jan. 15 issue of the Proceedings of the National Academy of Sciences, with UC San Diego Ph.D. candidate Yijia Pan as the first author.

Researchers found that microbubbles conjugated to streptavidin can be coupled to the surface of a cell, where mechanosensitive Piezo1 ion channels are expressed. Upon exposure to ultrasound waves, microbubbles vibrate and mechanically stimulate Piezo1 ion channels to let calcium ions inside the cell. This triggers downstream pathways, including calcineurin activation, NFAT dephoshorylation and translocation into the nucleus. The nucleus-translocated NFAT can bind to upstream response elements of genetic transducing modules to initiate gene expression of chimeric antigen receptor (CAR) for the recognition and killing of target cancer cells.

Pan Y, Yoon S, Sun J, Huang Z, Lee C, Allen M, Wu Y, Chang Y-J, Sadelain M, Shung KK, Chien S, Wang Y.
Mechanogenetics for the remote and non-invasive control of cancer immunotherapy.
Proc Natl Acad Sci USA, 2017. doi: http://dx.doi.org/10.1073/pnas.1714900115.

Most Popular Now

Top 20 Breaking eHealth News of 2018

eHealthNews.eu proudly presents the top 20 most popular breaking eHealth news from 2018. Have a wonderful 2019 New(s) Year filled with health, happiness, and spectacular success!

Artificial Intelligence Advances Threate…

Advances in artificial intelligence have created new threats to the privacy of people's health data, a new University of California, Berkeley, study shows. Led by UC Berkeley engineer Anil Aswani...

Shaping Cloud Selects Highland Marketing…

Public sector cloud transformation specialists Shaping Cloud have chosen Highland Marketing as their marketing and PR partner to help them deliver their growth ambitions in the burgeoning health and care...

Artificial Intelligence System Learns to…

A team of investigators from the Massachusetts General Hospital (MGH) Department of Radiology has developed a system using artificial intelligence to quickly diagnose and classify brain hemorrhages and to provide...

Rewired Pitchfest Launched to Showcase B…

Digital health innovators and start-ups are invited to pitch their disruptive ideas and prototypes to NHS digital leaders and leading healthtech investors at the new Digital Health Rewired event next...

Allscripts Joins with Microsoft to Explo…

Today, Allscripts (NASDAQ:MDRX), a global leader in health care information technology, announced a collaboration with Microsoft focused on implementing an innovative, integrated model for clinical research, aiming to enhance clinical...

Merck Welcomes Ten New Startups to its I…

Merck, a leading science and technology company, today announced the ten startups that will be joining the seventh intake of its Accelerator program at the Merck Innovation Center in Darmstadt...

First Smartphone App to Detect Opioid Ov…

At least 115 people die every day in the U.S. after overdosing on opioids, according to the National Institute on Drug Abuse. And in 2016, illegal injectable opioids became the...

Stanford Researchers Create a Wireless, …

A new device developed by Stanford University researchers could make it easier for doctors to monitor the success of blood vessel surgery. The sensor, detailed in a paper published Jan...

AI Approach Outperformed Human Experts i…

A research team led by investigators from the National Institutes of Health and Global Good has developed a computer algorithm that can analyze digital images of a woman's cervix and...

Digital Health Consultancy Invests in Cy…

Digital health consultancy Populo Consulting has secured Cyber Essentials Plus certification, in a move that demonstrates its commitment to operating to the same high standards as its NHS clients. Cyber Essentials...