New Computational Tool could Help Optimize Treatment of Alzheimer's Disease

Scientists have developed a novel computational approach that incorporates individual patients' brain activity to calculate optimal, personalized brain stimulation treatment for Alzheimer's disease. Lazaro Sanchez-Rodriguez of the University of Calgary, Canada, and colleagues present their new framework in PLOS Computational Biology.

Electrical stimulation of certain parts of the brain could help promote healthy activity in neural circuits impaired by Alzheimer's disease, a neurodegenerative condition. This experimental treatment has shown some promise in clinical trials. However, all patients currently receive identical treatment protocols, potentially leading to different outcomes according to individual variations in brain signaling.

To investigate the possibility of personalized brain stimulation, Sanchez-Rodriguez and colleagues took a theoretical approach. They built a computational tool that incorporates patients' MRI scans and physiological brain signaling measurements to calculate optimal brain stimulation signals, with the goal of delivering efficient, effective personalized treatment.

The new approach is based on a computational strategy known as the state-dependent Riccati equation control (SDRE), which has been applied in other fields--such as aerospace engineering--to optimize input signals that control dynamic, nonlinear systems like the human brain. This strategy enabled the new tool to identify specific brain regions that would not benefit from brain stimulation.

The researchers also used their new framework to show that certain parts of the brain, the limbic system and basal ganglia structures, could serve as particularly powerful targets for brain stimulation in Alzheimer's disease. Moreover, they found that patients whose neural structures are highly integrated in the brain network may be the most suitable candidates for stimulation.

"With our new framework, we are getting closer to erasing the knowledge gap between theory and application in brain stimulation," Sanchez-Rodriguez says. "I think we will soon see a boom in the application of our framework and similar tools to study other diseases involving impaired brain activity, such as epilepsy and Parkinson's."

Next, the researchers plan to refine their tool so that it accounts for additional variation in brain activity between patients. The approach will need to be tested in animals before it enters clinical trials.

Sanchez-Rodriguez LM, Iturria-Medina Y, Baines EA, Mallo SC, Dousty M, et al.
Design of optimal nonlinear network controllers for Alzheimer's disease.
PLOS Computational Biology 14(5): e1006136. doi: 10.1371/journal.pcbi.1006136.

Most Popular Now

How Blockchain Technology will Change th…

Opinion Article by Michael Krusche, founder and CEO of K&C. Let's imagine a world where all medical information about a patient is securely kept within a single system, and they can...

mHealth as Effective as Clinic-Based Int…

A mobile health (mHealth) intervention was found to be as effective as a clinic-based group intervention for people with serious mental illness in a new study published online in Psychiatric...

Mobile Health Technology can Potentially…

Mobile health technology has the potential to transform the way we prevent and manage heart disease, but there are unanswered questions about how to optimize this technology and maintain engagement...

New Computational Tool could Help Optimi…

Scientists have developed a novel computational approach that incorporates individual patients' brain activity to calculate optimal, personalized brain stimulation treatment for Alzheimer's disease. Lazaro Sanchez-Rodriguez of the University of Calgary...

First Call for Science and Technology at…

Participate in the first ever ESC Digital Health Call for Technology, for the chance to present your innovations, your technology or your products at ESC Congress 2018 in front of...

Siemens Healthineers Assists Swiss Post …

To expand its portfolio in the area of eHealth, Swiss Post will make use of the Siemens Healthineers eHealth Solutions(1) in the future. The eHealth solution offered by Swiss Post...

Philips Expands its Therapeutic Care Bus…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced that it has acquired Remote Diagnostic Technologies (RDT), a UK-based leading innovator of advanced solutions for the...

Joined-Up Health & Care Conference M…

InterSystems, a global leader in health information technology, will be celebrating a double anniversary at its annual Joined-Up Health & Care conference. This year’s event at The Belfry, Sutton Coldfield...

Ingestible 'Bacteria on a Chip' could He…

MIT researchers have built an ingestible sensor equipped with genetically engineered bacteria that can diagnose bleeding in the stomach or other gastrointestinal problems. This "bacteria-on-a-chip" approach combines sensors made from...

FDA Takes New Steps to Advance Digital H…

Today, the FDA is opening a docket to solicit feedback on important provisions of the 21st Century Cures Act ("Cures Act"). The Cures Act amended the Federal Food, Drug, and...

Mobile App for Autism Screening Yields U…

A Duke study of an iPhone app to screen young children for signs of autism has found that the app is easy to use, welcomed by caregivers and good at...

Open Call MSCA-IF-2018: Individual Fello…

The goal of the Individual Fellowships is to enhance the creative and innovative potential of experienced researchers, wishing to diversify their individual competence in terms of skill acquisition through advanced...