New Computational Tool could Help Optimize Treatment of Alzheimer's Disease

Scientists have developed a novel computational approach that incorporates individual patients' brain activity to calculate optimal, personalized brain stimulation treatment for Alzheimer's disease. Lazaro Sanchez-Rodriguez of the University of Calgary, Canada, and colleagues present their new framework in PLOS Computational Biology.

Electrical stimulation of certain parts of the brain could help promote healthy activity in neural circuits impaired by Alzheimer's disease, a neurodegenerative condition. This experimental treatment has shown some promise in clinical trials. However, all patients currently receive identical treatment protocols, potentially leading to different outcomes according to individual variations in brain signaling.

To investigate the possibility of personalized brain stimulation, Sanchez-Rodriguez and colleagues took a theoretical approach. They built a computational tool that incorporates patients' MRI scans and physiological brain signaling measurements to calculate optimal brain stimulation signals, with the goal of delivering efficient, effective personalized treatment.

The new approach is based on a computational strategy known as the state-dependent Riccati equation control (SDRE), which has been applied in other fields--such as aerospace engineering--to optimize input signals that control dynamic, nonlinear systems like the human brain. This strategy enabled the new tool to identify specific brain regions that would not benefit from brain stimulation.

The researchers also used their new framework to show that certain parts of the brain, the limbic system and basal ganglia structures, could serve as particularly powerful targets for brain stimulation in Alzheimer's disease. Moreover, they found that patients whose neural structures are highly integrated in the brain network may be the most suitable candidates for stimulation.

"With our new framework, we are getting closer to erasing the knowledge gap between theory and application in brain stimulation," Sanchez-Rodriguez says. "I think we will soon see a boom in the application of our framework and similar tools to study other diseases involving impaired brain activity, such as epilepsy and Parkinson's."

Next, the researchers plan to refine their tool so that it accounts for additional variation in brain activity between patients. The approach will need to be tested in animals before it enters clinical trials.

Sanchez-Rodriguez LM, Iturria-Medina Y, Baines EA, Mallo SC, Dousty M, et al.
Design of optimal nonlinear network controllers for Alzheimer's disease.
PLOS Computational Biology 14(5): e1006136. doi: 10.1371/journal.pcbi.1006136.

Most Popular Now

What the Radiologist should Know about A…

This paper aims to provide a review of the basis for application of AI in radiology, to discuss the immediate ethical and professional impact in radiology, and to consider possible...

The Mobile Game that can Detect Alzheime…

A specially designed mobile phone game can detect people at risk of Alzheimer's - according to new research from the University of East Anglia. Researchers studied gaming data from an...

Hospital Diagnoses Critically Ill Childr…

The Rady Children’s Hospital (San Diego, USA) used Moon, software developed by the Leuven-based (Belgium) company Diploid. Moon is the first software worldwide to use Artificial Intelligence (AI) for the...

AstraZeneca Starts Artificial Intelligen…

AstraZeneca and BenevolentAI began a long-term collaboration to use artificial intelligence (AI) and machine learning for the discovery and development of new treatments for chronic kidney disease (CKD) and idiopathic...

Novartis Presents First-of-its-Kind Algo…

Novartis today announced results from a validation study of the innovative, algorithm-based digital solution MS Progression Discussion Tool, or MSProDiscussTM. The tool aims to support and facilitate a discussion between...

Bayer Joins Sensyne Health Consortium Wo…

Sensyne Health plc (LSE: SENS), the British clinical AI technology company, and Bayer, the life sciences company, announce that Bayer has become Sensyne Health's preferred pharmaceutical partner to work together...

Red Hat Helps Public Health England Use …

Red Hat, Inc. (NYSE: RHT), the world's leading provider of open source solutions, announced that Public Health England (PHE), an executive agency of the Department of Health and Social Care...

Chipmunk Health Chooses Philips HealthSu…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced that telehealth service provider Chipmunk Health, with locations in the Netherlands and Canada, is leveraging the capabilities...

Siemens Healthineers and European Societ…

With their first course under the heading "Intelligence. Innovation. Imaging - The perfect vision of AI," held in Barcelona on April 5-6, Siemens Healthineers and the European Society of Radiology...

Mobile Prenatal App Shown to Reduce in-P…

Using the mobile app Babyscripts reduced in-person prenatal care visits while maintaining patient and provider satisfaction, according to research published in JMIR mHealth and uHealth by physician researchers from the...