Doctors Rely on More than Just Data for Medical Decision Making

Many technology companies are working on artificial intelligence systems that can analyze medical data to help diagnose or treat health problems. Such systems raise the question of whether this kind of technology can perform as well as a human doctor. A new study from MIT computer scientists suggests that human doctors provide a dimension that, as yet, artificial intelligence does not. By analyzing doctors' written notes on intensive-care-unit patients, the researchers found that the doctors' "gut feelings" about a particular patient's condition played a significant role in determining how many tests they ordered for the patient.

"There's something about a doctor's experience, and their years of training and practice, that allows them to know in a more comprehensive sense, beyond just the list of symptoms, whether you're doing well or you're not," says Mohammad Ghassemi, a research affiliate at MIT's Institute for Medical Engineering and Science (IMES). "They're tapping into something that the machine may not be seeing."

This intuition plays an even stronger role during the first day or two of a patient's hospital stay, when the amount of data doctors have on patients is less than on subsequent days.

Ghassemi and computer science graduate student Tuka Alhanai are the lead authors of the paper, which will be presented at the IEEE Engineering in Medicine and Biology Society conference on July 20. Other MIT authors of the paper are Jesse Raffa, an IMES research scientist, and Roger Mark, a professor of health sciences and technology and of electrical engineering and computer science. Shamim Nemati and Falgun Chokshi of Emory University are also authors of the study.

How to measure feelings

Doctors consider a huge number of factors - including symptoms, severity of illness, family history, and lifestyle habits - when deciding what kinds of exams to order for their patients. In addition to those factors, Ghassemi, Alhanai, and their colleagues wondered whether a doctor's "gut feelings" about a patient also plays a role in their decision-making.

"That gut feeling is probably informed by a history of experience that doctors have," Ghassemi says. "It's sort of like how when I was a kid, my mom could just look at me and tell that I had done something wrong. That's not because of something mystical, but because she had so much experience dealing with me when I had done something wrong that a simple glance had some data in it."

To try to reveal whether this kind of intuition plays a role in doctors' decisions, the researchers performed sentiment analysis of doctors' written notes. Sentiment analysis, which is often used for gauging consumer attitudes, is based on computer algorithms that examine written language and tally positive or negative sentiments associated with words used in the text.

The researchers performed their analysis on the MIMIC database, a collection of medical records from 60,000 ICU patients admitted to Beth Israel Deaconess Medical Center in Boston over a 10-year period. This database includes doctors' notes on the patients as well as severity of illness, diagnostic imaging exams, and several other factors.

The researchers wanted to determine what, if anything, the doctors' notes added on top of the information available in the medical records. They computed sentiment scores from the notes to see if there was any correlation with how many diagnostic imaging tests the doctors ordered for patients.

If medical data alone was driving doctors' decisions, then sentiment would not have any correlation with the number of tests ordered. However, the researchers found that when they accounted for all other factors, the doctors' sentiments did indeed help predict how many tests they would order. This effect was strongest at the beginning of a patient's hospital stay, when doctors had less medical information to go on, and then declined as time went by.

They also found that when doctors felt more pessimistic about a patient's condition, they ordered more testing, but only up to a certain point. If they felt very negatively about the patient's condition, they ordered fewer tests.

"Clearly the physicians are using something that is not in the data to drive part of their decision making," Alhanai says. "What's important is that some of those unseen effects are reflected by their sentiment."

Sentimental machines

Next, the researchers hope to learn more about just what factors contribute to doctors' gut feelings. That could potentially lead to the development of artificial intelligence systems that could learn to incorporate the same information that doctors are using to evaluate patients.

"The question is, can you get the machine to do something like that? It would be very interesting to teach the machine to approximate what the doctor encodes in their sentiment by using data not currently captured by electronic health systems, such as their speech," Alhanai says.

The research was funded by the National Institutes of Health (NIH) Neuroimaging Training Grant, the Abu Dhabi Education Council, the NIH Critical Care Informatics Grant, and the NIH Research Resource for Complex Physiologic Signals Grant.

Most Popular Now

Apple Health Records Available for Allsc…

Allscripts (NASDAQ: MDRX) announced that Apple Health Records is now available for Allscripts Sunrise™, TouchWorks® and Professional EHR™ clients and their patients. Health Records brings together hospitals, clinics and the...

Philips Signs Agreement to Create Taiwan…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced that Taipei Veterans General Hospital (TPVGH) will utilize the Philips IntelliSite Pathology Solution to transform its...

Robotic Thread is Designed to Slip throu…

MIT engineers have developed a magnetically steerable, thread-like robot that can actively glide through narrow, winding pathways, such as the labrynthine vasculature of the brain. In the future, this robotic...

St Helens and Knowsley Advance with Ambi…

St Helens and Knowsley Teaching Hospitals NHS Trusthas successfully gone live with System C’s CareFlow Vitals as part of its ambitious strategy to accelerate digitisation and become a digital exemplar...

Machine Learning Improves the Diagnosis …

Researchers from Charité - Universitätsmedizin Berlin and the German Cancer Consortium (DKTK) have successfully solved a longstanding problem in the diagnosis of head and neck cancers. Working alongside colleagues from...

Using a Smartphone to Detect Norovirus

A little bit of norovirus - the highly infectious microbe that causes about 20 million cases of food poisoning in the United States each year - goes a long way...

Experimental Validation Confirms the Abi…

Insilico Medicine, a global leader in artificial intelligence for drug discovery, today announced the publication of a paper titled, "Deep learning enables rapid identification of potent DDR1 kinase inhibitors," in...

Computer Model could Help Test New Sickl…

A team of Brown University researchers has developed a new computer model that simulates the way red blood cells become misshapen by sickle cell disease. The model, described in a...

The Future of Mind Control

Electrodes implanted in the brain help alleviate symptoms like the intrusive tremors associated with Parkinson's disease. But current probes face limitations due to their size and inflexibility. "The brain is...

Medical Informatics Europe Conference 20…

28 April - 1 May 2020, Geneva, Switzerland. The European Federation of Medical Informatics (EFMI) presents the 30th Medical Informatics Europe conference (MIE) at the Geneva International Conference Center (CICG). This...