Augmented Reality may Assist Cardiologists Plan and Perform Complex Procedures

Augmented reality (AR), a technology that superimposes computer-generated information on a user's view of the real world, offers a new platform to help physicians better visualize complex medical data, particularly before and during medical procedures. A new self-contained AR device aims to provide an immersive AR experience in which surgeons can interactively explore data in three dimensions.

Jihye Jang, a PhD Candidate at the Cardiac Magnetic Resonance (MR) Center at Beth Israel Deaconess Medical Center (BIDMC), and colleagues assessed AR's potential to help cardiologists visualize myocardial scarring in the heart as they perform ventricular tachycardia ablation or other electrophysiological interventions. Myocardial scarring can occur in people who experience a heart attack and also stems from the surgical repair of congenital heart disease. The team's findings, published in PLOS ONE, demonstrate that the new augmented reality technology confers a number of advantages.

"Augmented reality allows physicians to superimpose images, such as MRI or CT scans, as a guide during therapeutic intervention," said Jang. "Our report shows exciting potential that having this complex 3D scar information through augmented reality during the intervention may help guide treatment and ultimately improve patient care. Physicians can now use AR to view 3D cardiac MR information with a touchless interaction in sterile environment."

By projecting three dimensional imagery onto a glass screen worn like a diving mask on the surgeon's face, AR provides 3D depth perception and allows surgeons to interact with the medical data without physically touching a screen or computer mouse, maintaining a sterile environment and reducing the risk of infection. In Jang and colleague's pilot study, the researchers applied the augmented reality technique as they generated holographic 3D scar in five animal models that underwent controlled infarction and electrophysiological study.

3D holographic visualization of the scar was performed to assist assessment of the complex 3D scar architecture. An operator and mapping specialist viewed the holographic 3D scar during electrophysiological study, and completed the perceived usefulness questionnaire in the six-item usefulness scale and found it useful to have scar information during the intervention. The user could interactively explore 3D myocardial scar in the augmented reality environment that allows for the combination of holographic 3D LGE data interacting with any real-world environments, such as a surgical suite or patient's body.

"Our report is one of the first efforts to test augmented reality in cardiovascular electrophysiological intervention," said Jang. "Our next steps will expand the use of AR into treatments for arrhythmia by merging the scar information with electrophysiology data."

Jang J, Tschabrunn CM, Barkagan M, Anter E, Menze B, Nezafat R.
Three-dimensional holographic visualization of high-resolution myocardial scar on HoloLens.
PLoS One. 2018 Oct 8;13(10):e0205188. doi: 10.1371/journal.pone.0205188.

Most Popular Now

NHS and Patients to Benefit from New Par…

IMS MAXIMS and Secure Exchange Solutions have announced a partnership to offer mobile, secure and cost-effective provider-to-provider and provider-to-patient communications to NHS organisations, GP practices and patients.

International Master's in Digital Health

The Master of Science (M.Sc.) in Medical Informatics (MMI) at European Campus Rottal-Inn (ECRI) in Pfarrkirchen - a branch of the Deggendorf University of Applied Sciences (THD - Technische Hochschule...

Digital Medicine: The Opportunities and …

9 - 11 April 2019, Berlin, Germany. Be it preventive healthcare for dementia using intuitive apps, anonymous hospital hygiene inspections using IoT sensors, or VR applications that let hemiplegic patients live...

Highland Marketing Forms Alliance with E…

An alliance between Highland Marketing and Experiential HealthTech will be announced at this year's Digital Health Rewired, with both companies exhibiting from stand B14. Highland Marketing is a full-service marketing...

Google Research Shows How AI can Make Op…

As artificial intelligence continues to evolve, diagnosing disease faster and potentially with greater accuracy than physicians, some have suggested that technology may soon replace tasks that physicians currently perform. But...

Virtual Reality could be Used to Treat A…

Playing games in virtual reality (VR) could be a key tool in treating people with neurological disorders such as autism, schizophrenia and Parkinson's disease. The technology, according to a recent...

Open Call SC1-HCC-02-2019: Support for t…

In the past years several open service platforms for Active and Healthy Ageing domains have been developed, originating from the medical, independent living, and IoT domain. These platforms aim at...

Have an Innovative Digital Health Soluti…

G4A Partnerships are a great opportunity to get your solution in front of Bayer executives and decision makers. All the applications will be reviewed by key stakeholders who have global...

The Moore Blatch Silicon Cup Opens for E…

This year's Moore Blatch Silicon Cup has been launched and is now open for IT companies to enter. The event takes place over 26 - 27 September on the Isle...

MEDICA 2019: Clear Focus on Future Topic…

18 - 21 November 2019, Düsseldorf, Germany. As a result of the final phase of exhibitor registrations for the world’s leading medical trade fare MEDICA 2019 in Düsseldorf, one thing is...

Artificial Intelligence Sheds New Light …

What happens inside a cell when it is activated, changing, or responding to variations in its environment? Researchers from the VIB-UGent Center for Inflammation Research have developed a map of...