Big Data Approach Shown to be Effective for Evaluating Autism Treatments

Researchers at Rensselaer Polytechnic Institute who developed a blood test to help diagnose autism spectrum disorder have now successfully applied their distinctive big data-based approach to evaluating possible treatments. The findings, recently published in Frontiers in Cellular Neuroscience, have the potential to accelerate the development of successful medical interventions. One of the challenges in assessing the effectiveness of a treatment for autism is how to measure improvement. Currently, diagnosis and evaluating the success of an intervention rely heavily on observations by professionals and caretakers.

"Having some kind of a measure that measures something that's happening inside the body is really important," said Juergen Hahn, systems biologist, professor, and head of the Rensselaer Department of Biomedical Engineering.

Hahn and his team use machine-learning algorithms to analyze complex data sets. That is how he previously discovered patterns with certain metabolites in the blood of children with autism that can be used to successfully predict diagnosis. You can watch Hahn discuss that here.

In this most recent analysis, the team used a similar set of measurements from three different clinical trials that examined potential metabolic interventions. The researchers were able to compare data from before and after treatment, and look for correlations between those results and any observed changes of adaptive behavior.

"What we did here is showed that if you actively try to change concentrations of these metabolites that are being measured, then you will also see changes in the behavior," Hahn said.

Hahn said that this approach was unique in that it analyzed multiple medical markers at the same time, unveiling correlations not seen in the data if each measurement is investigated individually.

"It can speed up the development process because you now have an additional tool that tells you how well a treatment has worked," he said.

Hahn expects this type of approach to become an important component of clinical trials for autism in the future. "Having medical tests that measure quantities directly related to the physiology is important and we hope that they get incorporated into future trials," he said.

Hahn, a member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies, worked on this study with Rensselaer graduate student Troy Vargason, undergraduate student Emily Roth, and Uwe Kruger, who is a professor of practice in the biomedical engineering department.

In addition to developing and successfully testing the first physiological test for autism and this recent work, Hahn has also worked with colleagues to apply his method to determining a pregnant mother's relative risk for having a child with autism spectrum disorder.

Vargason T, Kruger U, Roth E, Delhey LM, Tippett M, Rose S, Bennuri SC, Slattery JC, Melnyk S, James SJ, Frye RE and Hahn J.
Comparison of Three Clinical Trial Treatments for Autism Spectrum Disorder Through Multivariate Analysis of Changes in Metabolic Profiles and Adaptive Behavior.
Front. Cell. Neurosci. 12:503. doi: 10.3389/fncel.2018.00503.

Most Popular Now

Researchers Capture First Images of Oxyg…

Oxygen in cancer tumors is known to be a major factor that helps radiation therapy be successful. Hypoxia, or starvation of oxygen, in solid tumors is also thought to be...

A New Method of Artificial Intelligence …

Despite the immense progress in the field of AI in recent years, we are still very far from human intelligence. Indeed, if current AI techniques allow to train computer agents...

PatchAi Startup has Arrived in the Marke…

PatchAi - a startup that offers, thanks to Artificial Intelligence and Machine Learning, an empathic virtual assistant to patients participating in clinical trials - announced that it has closed two...

NHS IT Chiefs Set the Stage for a Year o…

3 - 4 March 2019, London, United Kingdom. NHS technology leaders are to kick off the second-ever Digital Health Rewired Conference and Exhibition on 3 - 4 March at the Olympia...

Digital Health App Medicus AI Earns CE C…

Medicus AI, the Vienna-based health tech company, has received a ​Class I Medical Device CE Mark for its mobile application. The CE certification mark confirms that Medicus AI conforms to...

Siemens Healthineers Presents Solutions …

CT scanners with intelligent user guidance, AI-based software assistants for MRI and a lab system that revolutionizes workflows: Siemens Healthineers is showcasing its products and solutions according to the motto...

FDA Authorizes Marketing of First Cardia…

Today, the U.S. Food and Drug Administration authorized marketing of software to assist medical professionals in the acquisition of cardiac ultrasound, or echocardiography, images. The software, called Caption Guidance, is...

Human Body-on-Chip Platform Enables In V…

Drug development is an extremely arduous and costly process, and failure rates in clinical trials that test new drugs for their safety and efficacy in humans remain very high. According...

Portable Lab You Plug into Your Phone ca…

Engineers with the University of Cincinnati have created a tiny portable lab that plugs into your phone, connecting it automatically to a doctor's office through a custom app UC developed...

Helping Patients with Binge Eating Disor…

Behavioral therapy assisted by a smartphone app, delivered via telemedicine by a health coach, was an effective treatment for several symptoms of binge eating disorders, according to a study conducted...

SCCE's 8th Annual ECEI - European Compli…

16 - 18 March 2019, Amsterdam, The Netherlands. The European Compliance & Ethics Institute is the place to discuss compliance challenges and strategies with your peers from healthcare and across industry...