New AI Toolkit is the 'Scientist that never Sleeps'

Researchers have developed a new AI-driven platform that can analyse how pathogens infect our cells with the precision of a trained biologist. The platform, HRMAn ('Herman'), which stands for Host Response to Microbe Analysis, is open-source, easy-to-use and can be tailored for different pathogens including Salmonella enterica.

Pioneered by scientists at the Francis Crick Institute and UCL, HRMAn uses deep neural networks to analyse complex patterns in images of pathogen and human ('host') cell interactions, pulling out the same detailed characteristics that scientists do by-hand. The research is published in the open access journal eLife, which includes a link to download the platform and access tutorial videos.

"What used to be a manual, time-consuming task for biologists now takes us a matter of minutes on a computer, enabling us to learn more about infectious pathogens and how our bodies respond to them, more quickly and more precisely," says Eva Frickel, Group Leader at the Crick, who led the project. "HRMAn can actually see host-pathogen interactions like a biologist, but unlike us, it doesn't get tired and need to sleep!"

To demonstrate the power of HRMAn - which runs on the KNIME platform - the team used it to analyse the body's response to Toxoplasma gondii, a parasite that replicates in cats and is thought to be carried by more than a third of the world's population.

Researchers in the Crick's High Throughput Screening facility collected over 30,000 microscope images of five different types of Toxoplasma-infected human cells and loaded them into HRMAn for analysis. HRMAn detected and analysed over 175,000 pathogen-containing cellular compartments, providing detailed information about the number of parasites per cell, the location of the parasites within the cells, and how many cell proteins interacted with the parasites, among other variables.

"Previous attempts at automating host-pathogen image analysis failed to capture this level of detail," says Artur Yakimovich, Research Associate in Jason Mercer's lab at the MRC LMCB at UCL and co-first author of the study. "Using the same sorts of algorithms that run self-driving cars, we've created a platform that boosts the precision of high volume biological data analysis, which has revolutionised what we can do in the lab. AI algorithms come in handy when the platform evaluates the image-based data in a way a trained specialist would. It's also really easy to use, even for scientists with little to no knowledge of coding."

The team also used HRMAn to analyse Salmonella enterica - a bacterial pathogen 16 times smaller than Toxoplasma, demonstrating its versatility for studying different pathogens.

"Our team uses HRMAn to answer specific questions about host-pathogen interactions, but it has far-reaching implications outside the field too," says Daniel Fisch, Crick PhD student and co-first author of the study. "HRMAn can analyse any fluorescence image, making it relevant for lots of different areas of biology, including cancer research."

Daniel Fisch, Artur Yakimovich, Barbara Clough, Joseph Wright, Monique Bunyan, Michael Howell, Jason Mercer, Eva Frickel.
Defining host–pathogen interactions employing an artificial intelligence workflow.
eLife 2019;8:e40560. doi: 10.7554/eLife.40560.

Most Popular Now

Artificial Intelligence Solution Improve…

Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that difficulty finding the right volunteer subjects can undermine the effectiveness of...

South West London Pathology Picks CliniS…

One of the first pathology networks in the country, set up to serve more than two million people in south west London, has signed a contract with CliniSys for a...

Call for Tenders: Studies on eHealth, In…

The European Commission is launching a tender for two studies to survey and analyse progress on the digital transformation of the health and care in the EU, in particular with...

AI-based AI-Rad Companion Chest CT Softw…

AI-Rad Companion Chest CT(1), an intelligent software assistant for radiology, was recently awarded the CE mark, which means Siemens Healthineers can start marketing this artificial intelligence (AI)-based software as a...

Spot On for Healthcare Technology Startu…

10 - 12 October 2019, Berlin, Germany. XPOMET Medicinale brings together care providers, patients, and in general stakeholders from all health-related fields and geographic regions. The Festival of Future Medicine and...

Isansys Named as Finalist for OBN's Most…

Isansys Lifecare is proud to announce it has been shortlisted in the Most Transformative Digital Healthcare Company category at the OBN Annual Awards 2019. The award recognises the significant uptake...

7th MEDICA MEDICINE + SPORTS CONFERENCE

18 - 21 November 2019, Düsseldorf, Germany. What lengths do top athletes go to in order to reach peak performances and which findings in the field of professional sports are relevant...

How can We Successfully Converge the Hea…

Opinion Article by Erik Janssen, VP, Innovative Solutions, Neurology, UCB Pharma. The fourth industrial revolution is upon us and fundamentally changing the way we live, work and interact across all industries...

Carestream Health Completes Sale of Heal…

Carestream Healthhas completed the sale of the company's healthcare information solutions business to Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, in 26 of the 38...

Allscripts Listed on Lot One of Health S…

Allscripts has been included on a new list of accredited suppliers of electronic patient records that has been published by NHS England and NHSX. The company is one of just...