New Antibiotics Are Desperately Needed: Machine Learning could Help

As the threat of antibiotic resistance looms, microbiologists aren’t the only ones thinking up new solutions. James Zou, PhD, assistant professor of biomedical data science at Stanford, has applied machine learning to create an algorithm that generates thousands of entirely new virtual DNA sequences with the intent of one day creating antimicrobial proteins.

The algorithm, called Feedback GAN, essentially acts as a mass producer of different DNA snippets. And while these sequence attempts are somewhat random, the algorithm isn't working blindly. It’s basing the new possible peptides, or small groups of amino acids, on previous research that lays out the DNA sequences most likely to align with antimicrobial properties.

For now, these templates, which don't exist in nature, are theoretical, generated on a computer. But in the face of rising concerns about microbe resistance, Zou said it's critical to think about solutions that don't already exist.

"We chose to pursue antimicrobial proteins because it's a very important, high-impact problem that's also a relatively tractable problem for the algorithm," Zou said. "There are existing tools that we incorporate into our system that evaluate if a new sequence is likely to have the properties of a successful antimicrobial protein."

Feedback GAN builds on that, working to incorporate just the right balance of random chance and precision.

A paper describing the algorithm was published online Feb. 11 in Nature Machine Learning. Anvita Gupta, a student in computer science, is the first author; Zou is the senior author.

Self-refining

Gupta and Zou's algorithm doesn't just churn out new combinations of DNA. It also actively refines itself, learning what works and what doesn’t through a feedback loop: After the algorithm spits out a wide range of DNA sequences, it runs a trial-and-error learning process that sifts through the peptide suggestions. Based on their resemblance to other known antimicrobial peptides, the “good” ones get fed back into the algorithm to inform future DNA sequences generated from the code, and to get refined themselves.

"There's a built-in arbiter and, by having this feedback loop, the system learns to model newly generated sequences after those that are deemed likely to have antimicrobial properties," Zou said. "So the idea is both individual peptide sequences and the generation of the sequences get better and better."

Zou has also considered another core component of hypothetical proteins: protein folding. Proteins contort into very specific structures linked to their functions. An algorithm could create the perfect sequence, but unless it can fold up, it's useless - like the cogs of a clock strewn on a table.

Zou can tweak the algorithm so that instead of analyzing a propensity for antimicrobial properties, it determines the likelihood of correct folding.

"We can actually do these two things in parallel where we look at antimicrobial properties of one sequence and folding likelihood of another," said Zou. "We run both so that we’re optimizing either the antimicrobial properties or its ability to fold."

Next, Zou hopes to merge the two variations of the algorithm to create peptide sequences that are optimized for both their microbe-killing abilities and their ability to fold into a genuine protein.

Demo, instructions and code for FBGAN are available at https://github.com/av1659/fbgan.

Anvita Gupta, James Zou.
Feedback GAN for DNA optimizes protein functions.
Nature Machine Intelligence, 1, 105-111 (2019). doi: 10.1038/s42256-019-0017-4.

Most Popular Now

MRI Predict Intelligence Levels in Child…

A group of researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) took 4th place in the international MRI-based adolescent intelligence prediction competition. For the first...

Finally, Machine Learning Interprets Gen…

In this age of "big data," artificial intelligence (AI) has become a valuable ally for scientists. Machine learning algorithms, for instance, are helping biologists make sense of the dizzying number...

Artificial Intelligence (AI) can Detect …

A new technology for detecting low glucose levels via ECG using a non-invasive wearable sensor, which with the latest Artificial Intelligence can detect hypoglycaemic events from raw ECG signals has...

VTT Makes New Investments in Digital Hea…

VTT is launching new research activities in the area of digital health as part of the growing wellbeing and health technology ecosystem in Kuopio. The new initiative aims to create...

Bayer and Exscientia Collaborate to Leve…

Bayer and Exscientia Ltd., a UK-based Artificial Intelligence (AI)-driven drug discovery company, have entered into a three-year, multi-target collaboration. The partners will work on early research projects combining Exscientia's proprietary...

Philips Expands its Range of Consumer-Fo…

At CES 2020, Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced its expansion of personalized consumer health solutions that help shape the industry of...

Smartphone Cameras can Speed Up Urinary …

Biological Engineers at the University of Bath have developed a test that could help medics quickly diagnose urinary tract infections (UTIs), using a normal smartphone camera. Similar in principle to...

Edible 'Security Tag' to Protect Drugs f…

Manufacturing prescription drugs with distinct markings, colors, shapes or packaging isn't enough to protect them from counterfeiting, U.S. Drug Enforcement Administration reports have shown. Purdue University researchers are aiming to...

Bolton NHS Foundation Trust Goes Live wi…

Bolton NHS Foundation Trust is now live with Sunrise™ Acute Care, following one of the most extensive initial deployments for the Allscripts electronic patient record in the UK. The trust went...

A Better Testing Method for Patients wit…

Parkinson's disease is a neurodegenerative disorder that manifests through symptoms such as tremor, slow movements, limb rigidity and gait and balance problems. As such, nearly all diagnostic testing revolves around...

Siemens Healthineers Celebrates 125 Year…

Today it's commonplace, but at the time it was a medical-technical revolution - the discovery of X-rays by Wilhelm Conrad Röntgen 125 years ago in Würzburg. His discovery on November...