Google Research Shows How AI can Make Ophthalmologists More Effective

As artificial intelligence continues to evolve, diagnosing disease faster and potentially with greater accuracy than physicians, some have suggested that technology may soon replace tasks that physicians currently perform. But a new study from the Google AI research group shows that physicians and algorithms working together are more effective than either alone. It's one of the first studies to examine how AI can improve physicians' diagnostic accuracy. The new research will be published in the April edition of Ophthalmology, the ournal of the American Academy of Ophthalmology.

This study expands on previous work from Google AI showing that its algorithm works roughly as well as human experts in screening patients for a common diabetic eye disease called diabetic retinopathy. For their latest study, the researchers wanted to see if their algorithm could do more than simply diagnose disease. They wanted to create a new computer-assisted system that could "explain" the algorithm's diagnosis. They found that this system not only improved the ophthalmologists' diagnostic accuracy, but it also improved algorithm's accuracy.

More than 29 million Americans have diabetes, and are at risk for diabetic retinopathy, a potentially blinding eye disease. People typically don't notice changes in their vision in the disease's early stages. But as it progresses, diabetic retinopathy usually causes vision loss that in many cases cannot be reversed. That's why it's so important that people with diabetes have yearly screenings.

Unfortunately, the accuracy of screenings can vary significantly. One study found a 49 percent error rate among internists, diabetologists, and medical residents.

Recent advances in AI promise to improve access to diabetic retinopathy screening and to improve its accuracy. But it's less clear how AI will work in the physician's office or other clinical settings. Previous attempts to use computer-assisted diagnosis shows that some screeners rely on the machine too much, which leads to repeating the machine's errors, or under-rely on it and ignore accurate predictions. Researchers at Google AI believe some of these pitfalls may be avoided if the computer can "explain" its predictions.

To test this theory, the researchers developed two types of assistance to help physicians read the algorithm's predictions.

  • Grades: A set of five scores that represent the strength of evidence for the algorithm's prediction.
  • Grades + heatmap: Enhance the grading system with a heatmap that measures the contribution of each pixel in the image to the algorithm's prediction.

Ten ophthalmologists (four general ophthalmologists, one trained outside the US, four retina specialists, and one retina specialist in training) were asked to read each image once under one of three conditions: unassisted, grades only, and grades + heatmap.

Both types of assistance improved physicians' diagnostic accuracy. It also improved their confidence in the diagnosis. But the degree of improvement depended on the physician's level of expertise.

Without assistance, general ophthalmologists are significantly less accurate than the algorithm, while retina specialists are not significantly more accurate than the algorithm. With assistance, general ophthalmologists match but do not exceed the model's accuracy, while retina specialists start to exceed the model's performance.

"What we found is that AI can do more than simply automate eye screening, it can assist physicians in more accurately diagnosing diabetic retinopathy," said lead researcher, Rory Sayres, PhD.. "AI and physicians working together can be more accurate than either alone."

Like medical technologies that preceded it, Sayres said that AI is another tool that will make the knowledge, skill, and judgment of physicians even more central to quality care.

"There's an analogy in driving," Sayres explained. "There are self-driving vehicles, and there are tools to help drivers, like Android Auto. The first is automation, the second is augmentation. The findings of our study indicate that there may be space for augmentation in classifying medical images like retinal fundus images. When the combination of clinician and assistant outperforms either alone, this provides an argument for up-leveling clinicians with intelligent tools."

Rory Sayres, Ankur Taly, Ehsan Rahimy, Katy Blumer, David Coz, Naama Hammel, Jonathan Krause, Arunachalam Narayanaswamy, Zahra Rastegar, Derek Wu, Shawn Xu, Scott Barb, Anthony Joseph, Michael Shumski, Jesse Smith, Arjun B Sood, Greg S Corrado, Lily Peng, Dale R Webster.
Using a Deep Learning Algorithm and Integrated Gradients Explanationto Assist Grading for Diabetic Retinopathy.
Ophthalmology, Volume 126, Issue 4, 552 - 564. doi: 10.1016/j.ophtha.2018.11.016.

Most Popular Now

China to Take on Leading Role in Medical…

Asia, in particular China, has been advancing significantly on its way to a key role in geopolitics, says correspondent Frank Sieren - and towards spearheading developments in medical technologies. At...

Doctors Give Electronic Health Records a…

The transition to electronic health records (EHRs) was supposed to improve the quality and efficiency of healthcare for doctors and patients alike - but these technologies get an "F" rating...

Artificial Intelligence Algorithm can Le…

Artificial Intelligence can be used to predict molecular wave functions and the electronic properties of molecules. This innovative AI method developed by a team of researchers at the University of...

Preventive Health Care Via App

Demand for apps for preventive health care is growing all the time. Particularly popular are diagnostic assistants that record physiological and fitness data. However, there are data protection concerns with...

Artificial Intelligence-Based Algorithm …

Traumatic brain injury (TBI) is a significant global cause of mortality and morbidity with an increasing incidence, especially in low-and-middle income countries. The most severe TBIs are treated in intensive...

Bittium Exhibits its Innovative High-Tec…

Bittium exhibits its innovative products and solutions for cardiology and neurology at Medica 2019, the leading international trade fair for the medical sector, on November 18 - 21 in Dusseldorf...

MEDICA 2019 + COMPAMED 2019 Due to Launc…

18 - 21 November 2019, Düsseldorf, Germany. From Monday until Thursday, the entire medical world and health care sector will once again meet in Düsseldorf. With a record participation of a...

A Mobile App for Managing Mobile Medical…

Beginning of March 2019, Merci Charity Boutique association based in Bucharest, Romania started testing the "Mobile app for mobile medical units and cabinets", which helps the mobile dental practice to...

MEDICA and COMPAMED Hold their Own in a …

18 - 21 November 2019, Düsseldorf, Germany. The demand market for medical technology and medical products is becoming increasingly challenging and discriminating worldwide. Providers are adapting to this on a flexible...

GE Healthcare Expands Intelligent Health…

GE Healthcare launched the Edison Developer Program to accelerate the adoption and impact of intelligent applications and developer services across health systems. The program is based on Edison, GE Healthcare's...

Learning Platform to Improve Health Tech…

ANCILE Solutions is bringing its content creation and in-app learning tool, uPerform, to the UK health sectorto support NHS organisations with the deployment and adoption of major IT systems. ANCILE Solutions...

State of Health in the EU: Companion Rep…

Europe is a Union of and for citizens. What matters to Europeans matters to the EU. It should come as no surprise that regular surveys and debates across the continent...