Artificial Intelligence Sheds New Light on Cell Developmental Dynamics

What happens inside a cell when it is activated, changing, or responding to variations in its environment? Researchers from the VIB-UGent Center for Inflammation Research have developed a map of how to best model these cellular dynamics. Their work not only highlights the outstanding challenges of tracking cells throughout their growth and lifetime, but also pioneers new ways of evaluating computational biology methods that aim to do this.

Cells are constantly changing: they divide, change, or are activated by the environment. Cells can take many alternative paths in each of these processes and they have to decide which direction to follow based on internal and external clues. Studying these cellular trajectories has recently become a lot easier thanks to advances in single-cell technologies, which allows scientists to profile individual cells at unprecedented detail. Combined with computational methods, it is possible to see the different trajectories that cells take inside a living organism and have a closer look at what goes wrong in diseases.

Yvan Saeys (VIB-Ghent University), heading the research group, explains: "If you would take a random sample of thousands of cells that are changing, you would see that some are very similar, while others are really different. Trajectory inference methods are a novel class of Artificial Intelligence techniques that unveil complex structures such as cell trajectories in a data-driven way. In recent years there has been a proliferation of tools that construct such a trajectory. But the availability of a wide variety of such tools makes it very difficult for researchers to find the right one that will work in the biological system they are studying."

Two researchers in the Saeys lab, Robrecht Cannoodt and Wouter Saelens, set out to bring more clarity to the field by evaluating and comparing the available tools. Robrecht Cannoodt says: "From the start, we envisioned to make the benchmark as comprehensive as possible by including almost all methods, a varied set of datasets and metrics. We included the nitty-gritty details, such as the installation procedure, and put everything together in one large figure - a funky heatmap as we like to call it."

Wouter Saelens adds: "Apart from improving the trajectory inference field, we also attempted to improve the way benchmarking is done. In our study we ensured an easily reproducible and extensible benchmarking using the most recent software technologies such as containerization and continuous integration. In that way, our benchmarking study is not the final product, but only the beginning of accelerated software development and ultimately better understanding of our biomedical data."

Based on the benchmarking results, the team developed a set of user guidelines that can assist researchers in selecting the most suitable method for a specific research question, as well as an interactive app. This is the first comprehensive assessment of trajectory inference methods. In the future, the team plans to add a detailed parameter tuning procedure. The pipeline and tools for creating trajectories are freely available on dynverse.org, and the team welcomes discussion aimed at further development.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, Yvan Saeys.
A comparison of single-cell trajectory inference methods.
Nature Biotechnology (2019). doi: 10.1038/s41587-019-0071-9.

Most Popular Now

Artificial Intelligence Solution Improve…

Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that difficulty finding the right volunteer subjects can undermine the effectiveness of...

Cardio-Respiratory Synchronization may R…

Researchers from the School of Engineering at the University of Warwick have managed to expand the knowledge of the cardio-respiratory system after conducting an experiment measuring heart rate during fast-paced...

South West London Pathology Picks CliniS…

One of the first pathology networks in the country, set up to serve more than two million people in south west London, has signed a contract with CliniSys for a...

AI-based AI-Rad Companion Chest CT Softw…

AI-Rad Companion Chest CT(1), an intelligent software assistant for radiology, was recently awarded the CE mark, which means Siemens Healthineers can start marketing this artificial intelligence (AI)-based software as a...

Spot On for Healthcare Technology Startu…

10 - 12 October 2019, Berlin, Germany. XPOMET Medicinale brings together care providers, patients, and in general stakeholders from all health-related fields and geographic regions. The Festival of Future Medicine and...

Call for Tenders: Studies on eHealth, In…

The European Commission is launching a tender for two studies to survey and analyse progress on the digital transformation of the health and care in the EU, in particular with...

7th MEDICA MEDICINE + SPORTS CONFERENCE

18 - 21 November 2019, Düsseldorf, Germany. What lengths do top athletes go to in order to reach peak performances and which findings in the field of professional sports are relevant...

Carestream Health Completes Sale of Heal…

Carestream Healthhas completed the sale of the company's healthcare information solutions business to Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, in 26 of the 38...

How can We Successfully Converge the Hea…

Opinion Article by Erik Janssen, VP, Innovative Solutions, Neurology, UCB Pharma. The fourth industrial revolution is upon us and fundamentally changing the way we live, work and interact across all industries...

Isansys Named as Finalist for OBN's Most…

Isansys Lifecare is proud to announce it has been shortlisted in the Most Transformative Digital Healthcare Company category at the OBN Annual Awards 2019. The award recognises the significant uptake...