Artificial Intelligence Solution Improves Clinical Trial Recruitment

Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that difficulty finding the right volunteer subjects can undermine the effectiveness of these studies. Researchers at Cincinnati Children's Hospital Medical Center designed and tested a new computerized solution that used artificial intelligence (AI) to effectively identify eligible subjects from Electronic Health Records (EHRs), allowing busy clinical staff to focus their limited time on evaluating the highest quality candidates.

The study is published online in JMIR Medical Informatics. It shows that compared to manually screening EHRs to identify study candidates, the system--called the Automated Clinical Trial Eligibility Screener© (ACTES)--reduced patient screening time by 34 percent and improved patient enrollment by 11.1 percent. The system also improved the number of patients screened by 14.7 percent and those approached by 11.1 percent.

Busy emergency departments often serve as excellent locations for clinical trial coordinators to find people who may be good study candidates. According to the study's lead investigator, Yizhao Ni, PhD, Division of Biomedical Informatics, ACTES is designed to streamline what often proves to be inefficient clinical trial recruiting process that doesn't always catch enough qualified candidates.

"Because of the large volume of data documented in EHRs, the recruiting processes used now to find relevant information are very labor intensive within the short time frame needed," said Ni. "By leveraging natural language processing and machine learning technologies, ACTES was able to quickly analyze different types of data and automatically determine patients' suitability for clinical trials."

How it Works

The system has natural language processing, which allows computers to understand and interpret human language as the system analyzes large amounts of linguistic data. Machine learning allows computerized systems to automatically learn and evolve from experience without specifically being programmed. This makes it possible for computer programs to process data, extract information, and generate knowledge independently.

The automated system extracts structured information such as patient demographics and clinical assessments from EHRs. It also identifies unstructured information from clinical notes, including the patients' clinical conditions, symptoms, treatments and so forth. The extracted information is then matched with eligibility requirements to determine a subject's suitability for a specific clinical trial.

The system's machine learning component also allows it to learn from historical enrollments to improve its future recommendations, according to the researchers. Much of the analyses are handled by carefully designed AI algorithms, essentially procedures or formulas that computers use to solve problems by performing a set sequence of specified actions.

Advanced to Live Clinical Setting

Previously the system was successfully pilot tested in a retrospective study published in 2015 by the Journal of the American Medical Informatics Association. The current study tested the solution prospectively and in real time in a busy emergency department environment, where clinical research coordinators recruited patients for six different pediatric clinical trials involving different diseases.

Using the technology in a live clinical environment involved significant collaboration between data scientists, application developers, information service technicians and the end users, clinical staff.

"Thanks to the institution's collaborative environment, we successfully incorporated different groups of experts in designing the integration process of this AI solution." Ni said.

Ni Y, Bermudez M, Kennebeck S, Liddy-Hicks S, Dexheimer J.
A Real-Time Automated Patient Screening System for Clinical Trials Eligibility in an Emergency Department: Design and Evaluation.
JMIR Med Inform 2019;7(3):e14185. doi: 10.2196/14185.

Most Popular Now

MRI Predict Intelligence Levels in Child…

A group of researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) took 4th place in the international MRI-based adolescent intelligence prediction competition. For the first...

Finally, Machine Learning Interprets Gen…

In this age of "big data," artificial intelligence (AI) has become a valuable ally for scientists. Machine learning algorithms, for instance, are helping biologists make sense of the dizzying number...

Artificial Intelligence (AI) can Detect …

A new technology for detecting low glucose levels via ECG using a non-invasive wearable sensor, which with the latest Artificial Intelligence can detect hypoglycaemic events from raw ECG signals has...

VTT Makes New Investments in Digital Hea…

VTT is launching new research activities in the area of digital health as part of the growing wellbeing and health technology ecosystem in Kuopio. The new initiative aims to create...

Philips Expands its Range of Consumer-Fo…

At CES 2020, Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced its expansion of personalized consumer health solutions that help shape the industry of...

Bayer and Exscientia Collaborate to Leve…

Bayer and Exscientia Ltd., a UK-based Artificial Intelligence (AI)-driven drug discovery company, have entered into a three-year, multi-target collaboration. The partners will work on early research projects combining Exscientia's proprietary...

Smartphone Cameras can Speed Up Urinary …

Biological Engineers at the University of Bath have developed a test that could help medics quickly diagnose urinary tract infections (UTIs), using a normal smartphone camera. Similar in principle to...

Bolton NHS Foundation Trust Goes Live wi…

Bolton NHS Foundation Trust is now live with Sunrise™ Acute Care, following one of the most extensive initial deployments for the Allscripts electronic patient record in the UK. The trust went...

Edible 'Security Tag' to Protect Drugs f…

Manufacturing prescription drugs with distinct markings, colors, shapes or packaging isn't enough to protect them from counterfeiting, U.S. Drug Enforcement Administration reports have shown. Purdue University researchers are aiming to...

A Better Testing Method for Patients wit…

Parkinson's disease is a neurodegenerative disorder that manifests through symptoms such as tremor, slow movements, limb rigidity and gait and balance problems. As such, nearly all diagnostic testing revolves around...

Siemens Healthineers Celebrates 125 Year…

Today it's commonplace, but at the time it was a medical-technical revolution - the discovery of X-rays by Wilhelm Conrad Röntgen 125 years ago in Würzburg. His discovery on November...