Artificial Intelligence (AI) can Detect Low-Glucose Levels via ECG without Fingerpick Test

A new technology for detecting low glucose levels via ECG using a non-invasive wearable sensor, which with the latest Artificial Intelligence can detect hypoglycaemic events from raw ECG signals has been made by researchers from the University of Warwick.

Currently Continuous Glucose Monitors (CGM) are available by the NHS for hypoglycaemia detection (sugar levels into blood or derma). They measure glucose in interstitial fluid using an invasive sensor with a little needle, which sends alarms and data to a display device. In many cases, they require calibration twice a day with invasive finger-prick blood glucose level tests.

However, Dr Leandro Pecchia's team at the University of Warwick have today, the 13th January 2020 published results in a paper titled 'Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG' in the Nature Springer journal Scientific Reports proving that using the latest findings of Artificial Intelligence (i.e., deep learning), they can detect hypoglycaemic events from raw ECG signals acquired with off-the-shelf non-invasive wearable sensors.

Two pilot studies with healthy volunteers found the average sensitivity and specificity approximately 82% for hypoglycaemia detection, which is comparable with the current CGM performance, although non-invasive.

Dr Leandro Pecchia from the School of Engineering at the University of Warwick comments: "Fingerpicks are never pleasant and in some circumstances are particularly cumbersome. Taking fingerpick during the night certainly is unpleasant, especially for patients in paediatric age.

"Our innovation consisted in using artificial intelligence for automatic detecting hypoglycaemia via few ECG beats. This is relevant because ECG can be detected in any circumstance, including sleeping."

The figure shows the output of the algorithms over the time: the green line represents normal glucose levels, while the red line represents the low glucose levels. The horizontal line represents the 4mmol/L glucose value, which is considered the significant threshold for hypoglycaemic events. The grey area surrounding the continuous line reflects the measurement error bar.

The Warwick model highlights how the ECG changes in each subject during a hypoglycaemic event. The figure below is an exemplar. The solid lines represent the average heartbeats for two different subjects when the glucose level is normal (green line) or low (red line). The red and green shadows represent the standard deviation of the heartbeats around the mean. A comparison highlights that these two subjects have different ECG waveform changes during hypo events. In particular, Subject 1 presents a visibly longer QT interval during hypo, while the subject 2 does not.

The vertical bars represent the relative importance of each ECG wave in determining if a heartbeat is classified as hypo or normal.

From these bars, a trained clinician sees that for Subject 1, the T-wave displacement influences classification, reflecting that when the subject is in hypo, the repolarisation of the ventricles is slower.

In Subject 2, the most important components of the ECG are the P-wave and the rising of the T-wave, suggesting that when this subject is in hypo, the depolarisation of the atria and the threshold for ventricular activation are particularly affected. This could influence subsequent clinical interventions.

This result is possible because the Warwick AI model is trained with each subject's own data. Intersubjective differences are so significant, that training the system using cohort data would not give the same results. Likewise, personalised therapy based on our system could be more effective than current approaches.

Dr Leandro Pecchia comments: "The differences highlighted above could explain why previous studies using ECG to detect hypoglycaemic events failed. The performance of AI algorithms trained over cohort ECG-data would be hindered by these inter-subject differences.

"Our approach enable personalised tuning of detection algorithms and emphasize how hypoglycaemic events affect ECG in individuals. Basing on this information, clinicians can adapt the therapy to each individual. Clearly more clinical research is required to confirm these results in wider populations. This is why we are looking for partners."

Mihaela Porumb, Saverio Stranges, Antonio Pescapè, Leandro Pecchia.
Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG.
Sci Rep 10, 170, 2020. doi: 10.1038/s41598-019-56927-5.

Most Popular Now

Researchers Capture First Images of Oxyg…

Oxygen in cancer tumors is known to be a major factor that helps radiation therapy be successful. Hypoxia, or starvation of oxygen, in solid tumors is also thought to be...

VTT Makes New Investments in Digital Hea…

VTT is launching new research activities in the area of digital health as part of the growing wellbeing and health technology ecosystem in Kuopio. The new initiative aims to create...

A New Method of Artificial Intelligence …

Despite the immense progress in the field of AI in recent years, we are still very far from human intelligence. Indeed, if current AI techniques allow to train computer agents...

FDA Informs Health Care Providers, Facil…

Today, the U.S. Food and Drug Administration is issuing a safety communication informing health care providers, facilities and patients about cybersecurity vulnerabilities identified for certain GE Healthcare Clinical Information Central...

eHealthWeek 2020 Croatia - Trusted Infor…

15 - 17 April 2020, Rovinj, Croatia. In its capacity of hosting the upcoming Presidency of the Council of the European Union, the Croatian Ministry of Health is in preparations to...

Siemens Healthineers Presents Solutions …

CT scanners with intelligent user guidance, AI-based software assistants for MRI and a lab system that revolutionizes workflows: Siemens Healthineers is showcasing its products and solutions according to the motto...

NHS IT Chiefs Set the Stage for a Year o…

3 - 4 March 2019, London, United Kingdom. NHS technology leaders are to kick off the second-ever Digital Health Rewired Conference and Exhibition on 3 - 4 March at the Olympia...

PatchAi Startup has Arrived in the Marke…

PatchAi - a startup that offers, thanks to Artificial Intelligence and Machine Learning, an empathic virtual assistant to patients participating in clinical trials - announced that it has closed two...

Digital Health App Medicus AI Earns CE C…

Medicus AI, the Vienna-based health tech company, has received a ​Class I Medical Device CE Mark for its mobile application. The CE certification mark confirms that Medicus AI conforms to...

FDA Authorizes Marketing of First Cardia…

Today, the U.S. Food and Drug Administration authorized marketing of software to assist medical professionals in the acquisition of cardiac ultrasound, or echocardiography, images. The software, called Caption Guidance, is...

Human Body-on-Chip Platform Enables In V…

Drug development is an extremely arduous and costly process, and failure rates in clinical trials that test new drugs for their safety and efficacy in humans remain very high. According...

AI in Drug Discovery Conference 2020

16 - 17 March 2020, London, UK. SMi group presents the launch of the inaugural AI in Drug Discovery conference taking place in London. AI-empowered machine learning technologies hold the potential...