Integrate Micro Chips for Electronic Skin

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with external physical environment through numerous receptors interconnected with the nervous system. Scientists have been trying to transfer these features to artificial skin for a long time, aiming at robotic applications. Operation of robotic systems heavily rely on electronic and magnetic field sensing functionalities required for positioning and orientation in space. A lot of research and development have been devoted into implementation of these functionalities in a flexible and compliant form. The recent advancements in flexible sensors and organic electronics provided important prerequisites. These devices can operate on soft and elastic surfaces, whereas sensors perceive various physical properties and transmit them via readout circuits.

To closely replicate natural skin, it is however necessary to interconnect a big number of individual sensors. This challenging task became a major obstacle in realizing electronic skin. First demonstrations were based on an array of individual sensors addressed separately, which unavoidably resulted into a tremendous number of electronic connections. In order to reduce the necessary wiring, an important technology step had to be done. Namely, complex electronic circuits, such as shift registers, amplifiers, current sources and switches must be combined with individual magnetic sensors to achieve fully integrated devices.

Researchers from Dresden, Chemnitz and Osaka could overcome this obstacle in a pioneering active matrix magnetic sensor system presented in a recent article of the journal Science Advances. The sensor system consists of a 2 x 4 array of magnetic sensors, an organic bootstrap shift register, required for controlling the sensor matrix, and organic signal amplifiers. The special feature is that all electronic components are based on organic thin-film transistors and are integrated within a single platform. The researchers demonstrate that the system has a high magnetic sensitivity and can acquire the two-dimensional magnetic field distribution in real time. It is also very robust against mechanical deformation, such as bending, creasing or kinking. In addition to full system integration, the use of organic bootstrap shift registers is a very important development step towards active matrix electronic skin for robotic and wearable applications.

Prof. Dr. Oliver G. Schmidt, Director at the Leibniz Institute for Solid State and Materials Research Dresden and Dr. Daniil Karnaushenko on the next steps: "Our first integrated magnetic functionalities prove that thin-film flexible magnetic sensors can be integrated within complex organic circuits. Ultra-compliant and flexible nature of these devices is indispensable feature for modern and future applications such as soft-robotics, implants and prosthetics. The next step is to increase the number of sensors per surface area as well as to expand the electronic skin to fit larger surfaces."

M Kondo, M Melzer, D Karnaushenko, T Uemura, S Yoshimoto, M Akiyama, Y Noda1, T Araki, OG Schmidt, T Sekitani.
Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits.
Science Advances 22 Jan 2020, Vol. 6, no. 4. doi: 10.1126/sciadv.aay6094.

Most Popular Now

Researchers Capture First Images of Oxyg…

Oxygen in cancer tumors is known to be a major factor that helps radiation therapy be successful. Hypoxia, or starvation of oxygen, in solid tumors is also thought to be...

A New Method of Artificial Intelligence …

Despite the immense progress in the field of AI in recent years, we are still very far from human intelligence. Indeed, if current AI techniques allow to train computer agents...

PatchAi Startup has Arrived in the Marke…

PatchAi - a startup that offers, thanks to Artificial Intelligence and Machine Learning, an empathic virtual assistant to patients participating in clinical trials - announced that it has closed two...

FDA Authorizes Marketing of First Cardia…

Today, the U.S. Food and Drug Administration authorized marketing of software to assist medical professionals in the acquisition of cardiac ultrasound, or echocardiography, images. The software, called Caption Guidance, is...

Digital Health App Medicus AI Earns CE C…

Medicus AI, the Vienna-based health tech company, has received a ​Class I Medical Device CE Mark for its mobile application. The CE certification mark confirms that Medicus AI conforms to...

Portable Lab You Plug into Your Phone ca…

Engineers with the University of Cincinnati have created a tiny portable lab that plugs into your phone, connecting it automatically to a doctor's office through a custom app UC developed...

Helping Patients with Binge Eating Disor…

Behavioral therapy assisted by a smartphone app, delivered via telemedicine by a health coach, was an effective treatment for several symptoms of binge eating disorders, according to a study conducted...

SCCE's 8th Annual ECEI - European Compli…

16 - 18 March 2019, Amsterdam, The Netherlands. The European Compliance & Ethics Institute is the place to discuss compliance challenges and strategies with your peers from healthcare and across industry...

InterSystems Releases Novel Coronavirus …

InterSystems is releasing global functionality for its TrakCare® unified healthcare information system to screen and support patients with 2019-nCoV, the novel coronavirus infection that originated in Wuhan in China.

Telehealth Interventions Associated with…

Telehealth interventions are associated with improved obstetric outcomes, according to a review published from physician-researchers at the George Washington University. The article, published in the journal Obstetrics and Gynecology, presents...

CompuGroup Medical to Acquire Certain Ce…

CompuGroup Medical SE (CGM) and Cerner Corporation (NASDAQ: CERN), a global health care technology company, have entered into an agreement regarding the acquisition by CompuGroup Medical of a part of...