Innovative Technology for Computed Tomography

Siemens HealthcareSiemens Healthcare has developed a detector with a revolutionary new electronic design for its computed tomography (CT) scanners: The Stellar Detector can transmit analog data with minimal wiring, making it possible to digitize the measured signals with virtually no interference. The wiring used in traditional detector technology generates electronic noise that can diminish the quality of the medical images from low-intensity signals. The only way to reduce this noise would be to increase the radiation dose. Siemens has now succeeded in combining all the signal conversion electronics on a single chip. This is a critical breakthrough for enhanced CT image quality - at lower levels of radiation - and yet another demonstration of the innovative power of Siemens Healthcare and its "Agenda 2013" initiative.

The development of computed tomography (CT) is dominated by efforts to enhance the quality of the images and decrease the required doses of radiation. The detector - which, together with the x-ray tube, forms the scanner that is integrated into the ring-shaped gantry and rotates around the patient - is no less crucial. X-rays are absorbed by the body to varying degrees, depending on the type of scanned tissue. The detector measures this absorption and uses this information to create a digital signal. Standard detector technology has very little potential for meaningful progress when it comes to reducing doses and optimizing images, however. That’s because the signals have to pass through a complex wiring system several centimeters in length to reach the electronics that perform the analysis. This has a negative impact on the signal-to-electronic-noise ratio (SENR) - and ultimately on the image quality: The longer the wires, the greater the electronic noise. And the greater the electronic noise, the poorer the image quality. This is especially true at lower doses.

To reduce image noise, we had to minimize the signal wiring. The Siemens detector development team in Forchheim achieved this by combining all the analysis electronics on a single chip. The Stellar Detector is the first product to feature the newly designed electronics. The new detector can now convert the analog signals from the photo diode to digital signals with almost no interference. The converted signals can then be processed digitally with no loss. This makes it possible to produce medical images with a noticeably higher SENR than before at the same radiation dose. "The Stellar Detector reduces image noise by 20 to 30 percent compared to conventional detectors," notes Prof. Dr. Jörg Hausleiter, director of the cardiac intensive care unit at the German Heart Centre in Munich. "This makes it possible for us to work with lower radiation in a broad spectrum of examinations - and the image quality has improved at the same time."

Combined with the Somatom Definition Flash and Somatom Definition Edge high-end CT scanners, Stellar delivers extremely detailed images with a spatial resolution as fine as 0.30 millimeters that makes it possible for doctors to recognize even the finest vascular structures. The greater sensitivity of the Stellar Detector also helps doctors when they examine obese patients: The new detector provides diagnostically useful images despite much higher levels of x-ray absorption in larger body masses. "The new detector is the first to deliver excellent images of even very obese patients with a body mass index over 35," says Dr. Stefan Martinoff, director of the Department of Radiology and Nuclear Medicine at the German Heart Centre.

Siemens Healthcare is offering the Stellar Detector in its Somatom Definition Flash and Somatom Definition Edge CT scanners. All existing Somatom Definition Flash and Somatom Definition AS scanners can be upgraded to the new detector. "Upgrading to the Stellar Detector lets us reduce the dose of all examinations by up to 30 percent," says PD Dr. Hatem Alkadhi, chief medical officer at the Department of Diagnostic and Interventional Radiology at the University Hospital in Zurich.

Launched in November 2011 by the Siemens Healthcare Sector, "Agenda 2013" is a two-year global initiative to further strengthen the Healthcare Sector's innovative power and competitiveness. Specific measures will be implemented in four fields of action: Innovation, Competitiveness, Regional Footprint, and People Development.

Related news articles:

About Siemens Healthcare
The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source - from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2011 (to September 30), the Sector posted revenue of 12.5 billion euros and profit of around 1.3 billion euros.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...