VPHOP

Nearly four million osteoporotic bone fractures cost the European health system more than 30 billion Euro per year. This figure could double by 2050. After the first fracture, the chances of having another one increase by 86%. We need to prevent osteoporotic fractures. The first step is an accurate prediction of the patient-specific risk of fracture that considers not only the skeletal determinants but also the neuromuscular condition.

The aim of VPHOP is to develop a multiscale modelling technology based on conventional diagnostic imaging methods that makes it possible, in a clinical setting, to predict for each patient the strength of his/her bones, how this strength is likely to change over time, and the probability that the he/she will overload his/her bones during daily life. With these three predictions, the evaluation of the absolute risk of bone fracture will be much more accurate than any prediction based on external and indirect determinants, as it is current clinical practice.

These predictions will be used to:

  • improve the diagnostic accuracy of the current clinical standards;
  • to provide the basis for an evidence-based prognosis with respect to the natural evolution of the disease, to pharmacological treatments, and/or to preventive interventional treatments aimed to selectively strengthen particularly weak regions of the skeleton.

For patients at high risk of fracture, and for which the pharmacological treatment appears insufficient, the VPHOP system will also assist the interventional radiologist in planning the augmentation procedure. The various modelling technologies developed during the project will be validated not only in vitro, on animal models, or against retrospective clinical outcomes, but will also be assessed in term of clinical impact and safety on small cohorts of patients enrolled at four different clinical institutions, providing the factual basis for effective clinical and industrial exploitations.

For further information, please visit:
http://www.vphop.eu

Project co-ordinator:
Istituto Ortopedico Rizzoli

Partners:

  • SCS SRL
  • Société d’Etudes et de Recherches de l’Ecole Nationale Supérieure d’Arts et Métiers
  • Universität Bern
  • Biospace Med SA
  • University of Bedfordshire
  • Technische Universiteit Eindhoven
  • Philips Medical Systems Nederland BV
  • empirica Gesellschaft für Kommunikations- und Technologieforschung mbH
  • Université de Genève (UNIGE)
  • Sylvia Lawry Centre for Multiple Sclerosis Research e.V.
  • ANSYS France SAS
  • Háskóli Íslands
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Uppsala universitet
  • Charité - Universitätsmedizin Berlin
  • Eidgenössische Technische Hochschule Zürich (ETHZ)
  • BrainLAB AG
  • Katholieke Universiteit Leuven

Timetable: from 08/2008 – to 08/2012

Total cost: € 12.073.349

EC funding: € 8.989.363

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)

Related news articles::

Most Popular Now

Artificial Intelligence Predicts Dementi…

Imagine if doctors could determine, many years in advance, who is likely to develop dementia. Such prognostic capabilities would give patients and their families time to plan and manage treatment...

Using Machine Learning to Improve Patien…

Doctors are often deluged by signals from charts, test results, and other metrics to keep track of. It can be difficult to integrate and monitor all of these data for...

Researchers Uncover Security Issues with…

Use caution when entering personal health information into a convenient app on your mobile device, because not all apps are created equal when it comes to protecting your privacy, warns...

Self-Powered Paper-Based 'SPEDs' may Lea…

A new medical-diagnostic device made out of paper detects biomarkers and identifies diseases by performing electrochemical analyses - powered only by the user's touch - and reads out the color-coded...

New App Uses Smartphone Selfies to Scree…

Pancreatic cancer has one of the worst prognoses - with a five-year survival rate of 9 percent - in part because there are no telltale symptoms or non-invasive screening tools...

Nurses Becoming e-Nurses by Using Patien…

The ambitions of NHS Digital’s e-nursing week and the Royal College of Nursing's (RCN) 'Every nurse an e-nurse' campaign are being realised by nurses across the UK, who are seeing...

New Diagnostic Tool Spots First Signs of…

Researchers have developed the first tool that can diagnose Parkinson's disease when there are no physical symptoms, offering hope for more effective treatment of the condition. There are currently no...

Stroke Patient Improvement with a Brain-…

University of Adelaide researchers have shown that it is possible for stroke patients to improve motor function using special training involving connecting brain signals with a computer. In a "proof-of-principle...

eHealth Hub Call: Lean Startup Academy

The Lean Startup Academy is an unique opportunity to mature your business by systematically testing your ideas against the market with the support of experts. The course will help you...

Google Glass App Helps Autistic Children…

A prototype software application, to be used with the optical head-mounted display Google Glass, has been designed as a social-skills coach for children with autism spectrum disorder (ASD). A new...

Philips Innovations at IFA 2017 Put Cons…

At this year's Internationale Funkausstellung (IFA) in Berlin, Germany, Royal Philips (NYSE: PHG, AEX: PHIA) showcases new products and services that empower consumers to take an active role in managing...