VPHOP

Nearly four million osteoporotic bone fractures cost the European health system more than 30 billion Euro per year. This figure could double by 2050. After the first fracture, the chances of having another one increase by 86%. We need to prevent osteoporotic fractures. The first step is an accurate prediction of the patient-specific risk of fracture that considers not only the skeletal determinants but also the neuromuscular condition.

The aim of VPHOP is to develop a multiscale modelling technology based on conventional diagnostic imaging methods that makes it possible, in a clinical setting, to predict for each patient the strength of his/her bones, how this strength is likely to change over time, and the probability that the he/she will overload his/her bones during daily life. With these three predictions, the evaluation of the absolute risk of bone fracture will be much more accurate than any prediction based on external and indirect determinants, as it is current clinical practice.

These predictions will be used to:

  • improve the diagnostic accuracy of the current clinical standards;
  • to provide the basis for an evidence-based prognosis with respect to the natural evolution of the disease, to pharmacological treatments, and/or to preventive interventional treatments aimed to selectively strengthen particularly weak regions of the skeleton.

For patients at high risk of fracture, and for which the pharmacological treatment appears insufficient, the VPHOP system will also assist the interventional radiologist in planning the augmentation procedure. The various modelling technologies developed during the project will be validated not only in vitro, on animal models, or against retrospective clinical outcomes, but will also be assessed in term of clinical impact and safety on small cohorts of patients enrolled at four different clinical institutions, providing the factual basis for effective clinical and industrial exploitations.

For further information, please visit:
http://www.vphop.eu

Project co-ordinator:
Istituto Ortopedico Rizzoli

Partners:

  • SCS SRL
  • Société d’Etudes et de Recherches de l’Ecole Nationale Supérieure d’Arts et Métiers
  • Universität Bern
  • Biospace Med SA
  • University of Bedfordshire
  • Technische Universiteit Eindhoven
  • Philips Medical Systems Nederland BV
  • empirica Gesellschaft für Kommunikations- und Technologieforschung mbH
  • Université de Genève (UNIGE)
  • Sylvia Lawry Centre for Multiple Sclerosis Research e.V.
  • ANSYS France SAS
  • Háskóli Íslands
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Uppsala universitet
  • Charité - Universitätsmedizin Berlin
  • Eidgenössische Technische Hochschule Zürich (ETHZ)
  • BrainLAB AG
  • Katholieke Universiteit Leuven

Timetable: from 08/2008 – to 08/2012

Total cost: € 12.073.349

EC funding: € 8.989.363

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)

Related news articles::

Most Popular Now

NHS Staff Punished as 500,000 Rely on Wh…

WhatsApp, Facebook Messenger and other unauthorised instant messaging (IM) apps are being used by approximately 500,000 NHS staff at work, as a growing number turn to consumer tools to communicate...

Call for Abstracts: European Telemedicin…

27 - 29 May 2018, Sitges, Barcelona, Spain. The European Telemedicine Conference 2018 (ETC18) is an interdisciplinary forum for healthcare professionals, directors, managers, and researchers with the intent of bringing together...

conhIT 2018: The stage is Set for Dialog…

17 - 19 April 2018, Berlin, Germany. Finding out about and supporting all aspects of the digital transformation of the healthcare system: that is what this year's conhIT, Europe's largest event...

Smartphone 'Scores' can Help Doctors Tra…

Parkinson's disease, a progressive brain disorder, is often tough to treat effectively because symptoms, such as tremors and walking difficulties, can vary dramatically over a period of days, or even...

Portable Device Detects Severe Stroke in…

A new device worn like a visor can detect emergent large-vessel occlusion in patients with suspected stroke with 92 percent accuracy, report clinical investigators at the Medical University of South...

Focus on the Digital Transformation - A …

17 - 19 April 2018, Berlin, Germany. How is the digitalisation of the healthcare system affecting the relationship between patients and doctors? What new innovations and solutions does the health IT...

Imitation is the Most Sincere Form of Fl…

For every two mobile apps released, one is a clone of an existing app. However, new research published in the INFORMS journal Information Systems Research shows the success of the...

Blackpool Teaching Hospitals Triggers Di…

Blackpool Teaching Hospitals NHS Foundation Trust has laid the foundations for an ambitious digitisation programme, by deploying IMS MAXIMS technology in its emergency department. The go-live is already helping staff...

Merck Partners with Medisafe to Help Imp…

Merck, a leading science and technology company, today announced a new collaboration with US-based Medisafe to help its cardiometabolic patients better manage medication intake and adhere to prescribed treatment regimens...

Philips Research-led Big Data Consortium…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, together with its consortium partners, today announced that it has received funding from the EU's Horizon 2020 program...

Smartphone App Performs Better than Trad…

A smartphone application using the phone's camera function performed better than traditional physical examination to assess blood flow in a wrist artery for patients undergoing coronary angiography, according to a...