VPHOP

Nearly four million osteoporotic bone fractures cost the European health system more than 30 billion Euro per year. This figure could double by 2050. After the first fracture, the chances of having another one increase by 86%. We need to prevent osteoporotic fractures. The first step is an accurate prediction of the patient-specific risk of fracture that considers not only the skeletal determinants but also the neuromuscular condition.

The aim of VPHOP is to develop a multiscale modelling technology based on conventional diagnostic imaging methods that makes it possible, in a clinical setting, to predict for each patient the strength of his/her bones, how this strength is likely to change over time, and the probability that the he/she will overload his/her bones during daily life. With these three predictions, the evaluation of the absolute risk of bone fracture will be much more accurate than any prediction based on external and indirect determinants, as it is current clinical practice.

These predictions will be used to:

  • improve the diagnostic accuracy of the current clinical standards;
  • to provide the basis for an evidence-based prognosis with respect to the natural evolution of the disease, to pharmacological treatments, and/or to preventive interventional treatments aimed to selectively strengthen particularly weak regions of the skeleton.

For patients at high risk of fracture, and for which the pharmacological treatment appears insufficient, the VPHOP system will also assist the interventional radiologist in planning the augmentation procedure. The various modelling technologies developed during the project will be validated not only in vitro, on animal models, or against retrospective clinical outcomes, but will also be assessed in term of clinical impact and safety on small cohorts of patients enrolled at four different clinical institutions, providing the factual basis for effective clinical and industrial exploitations.

For further information, please visit:
http://www.vphop.eu

Project co-ordinator:
Istituto Ortopedico Rizzoli

Partners:

  • SCS SRL
  • Société d’Etudes et de Recherches de l’Ecole Nationale Supérieure d’Arts et Métiers
  • Universität Bern
  • Biospace Med SA
  • University of Bedfordshire
  • Technische Universiteit Eindhoven
  • Philips Medical Systems Nederland BV
  • empirica Gesellschaft für Kommunikations- und Technologieforschung mbH
  • Université de Genève (UNIGE)
  • Sylvia Lawry Centre for Multiple Sclerosis Research e.V.
  • ANSYS France SAS
  • Háskóli Íslands
  • Institut National de la Santé et de la Recherche Médicale (INSERM)
  • Uppsala universitet
  • Charité - Universitätsmedizin Berlin
  • Eidgenössische Technische Hochschule Zürich (ETHZ)
  • BrainLAB AG
  • Katholieke Universiteit Leuven

Timetable: from 08/2008 – to 08/2012

Total cost: € 12.073.349

EC funding: € 8.989.363

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)

Related news articles::

Most Popular Now

MRI Predict Intelligence Levels in Child…

A group of researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) took 4th place in the international MRI-based adolescent intelligence prediction competition. For the first...

CAD4TB: Artificial Iintelligence for Tub…

Is it possible to screen thousands of people for tuberculosis using artificial intelligence in a country where internet barely exists? It is with CAD4TB. As of October, this innovative software...

Pros and Cons of Mommy Mobile Apps

Mobile phone apps are increasingly being used to support breastfeeding decisions - sometimes at a cost, a Flinders University study indicates. The objective approach of most infant feeding (IF) apps...

Finally, Machine Learning Interprets Gen…

In this age of "big data," artificial intelligence (AI) has become a valuable ally for scientists. Machine learning algorithms, for instance, are helping biologists make sense of the dizzying number...

Philips Expands its Range of Consumer-Fo…

At CES 2020, Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced its expansion of personalized consumer health solutions that help shape the industry of...

Gloucestershire Hospitals Announce Signi…

Gloucestershire Hospitals NHS Foundation Trust has gone live with the first elements of its Allscripts Sunrise electronic patient record just five months after signing a contract with the company. The trust...

Bayer and Exscientia Collaborate to Leve…

Bayer and Exscientia Ltd., a UK-based Artificial Intelligence (AI)-driven drug discovery company, have entered into a three-year, multi-target collaboration. The partners will work on early research projects combining Exscientia's proprietary...

A Better Testing Method for Patients wit…

Parkinson's disease is a neurodegenerative disorder that manifests through symptoms such as tremor, slow movements, limb rigidity and gait and balance problems. As such, nearly all diagnostic testing revolves around...

Artificial Intelligence (AI) can Detect …

A new technology for detecting low glucose levels via ECG using a non-invasive wearable sensor, which with the latest Artificial Intelligence can detect hypoglycaemic events from raw ECG signals has...