HAMAM

Despite tremendous advances in modern imaging technology, both early detection and accurate diagnosis of breast cancer are still unresolved challenges. Today, a variety of imaging modalities and image-guided biopsy procedures exist to identify and characterize morphology and function of suspicious breast tissue. However, a clinically feasible solution for breast imaging, which is both highly sensitive and specific with respect to breast cancer, is still missing. As a consequence, unnecessary biopsies are taken and tumours frequently go undetected until a stage where therapy is costly or unsuccessful.

HAMAM (Highly accurate breast cancer diagnosis through integration of biological knowledge, novel imaging modalities, and modelling) project will tackle this challenge by providing a means to seamlessly integrate the available multi-modal images and the patient information on a single clinical workstation. Based on knowledge gained from a large multi-disciplinary database, populated within the scope of this project, suspicious breast tissue will be characterised and classified.

HAMAM will achieve this by:

  • Building the tools needed to integrate datasets / modalities into a single interface.
  • Providing pre processing / standardization tools that will allow for optimal comparison of disparate data
  • Building spatial correlation information datasets to allow for new similarity and multimodal tissue models. These will be key in the detection and diagnosis of breast cancer
  • Building in adaptability that allows for the integration of other sources of knowledge such as tumour models, genetic data, genotype, phenotype and standardised imaging.

The exact diagnosis of suspicious breast tissue is ambiguous in many cases. HAMAM will resolve this using the statistical knowledge extracted from the large case database. The clinical workstation will suggest additional image modalities that may be captured to optimally resolve these uncertainties. The workstation thus guides the clinician in establishing a patient specific optimal diagnosis. This ultimately leads to a more specific and individual diagnosis.

For further information, please visit:
http://www.hamam-project.eu

Project co-ordinator:
EIBIR gemeinnuetzige GmbH zur Foerderung der. Erforschung der biomedizinischen Bildgebung

Partners:

  • Boca Raton Community Hospital Inc (USA)
  • MeVis Research GmbH (Germany)
  • MeVis Medical Solutions AG (Germany)
  • University College London (United Kingdom)
  • Radboud Universiteit Nijmegen - Stichting Katholieke Universiteit (Netherlands)
  • Charité - Universitätsmedizin Berlin (Germany)
  • The University of Dundee (United Kingdom)
  • Eidgenössische Technische Hochschule Zürich (Switzerland)

Timetable: from 09/2008 - to 08/2011

Total cost: € 4.250.000

EC funding: € 3.100.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Two Artificial Intelligences Talk to Eac…

Performing a new task based solely on verbal or written instructions, and then describing it to others so that they can reproduce it, is a cornerstone of human communication that...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

AI-Based App can Help Physicians Find Sk…

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...