IBM Helps Italian Orthopedic Institute Perform Deep Analytics to Treat Rare Skeletal Diseases

IBMIBM (NYSE: IBM)announced that its Research scientists are working with the Rizzoli Orthopedic Institute, in Bologna, Italy, to use information technology to better address treatment and research for rare genetic skeletal diseases.

Scientists from the two organizations are collaborating on a system called BioMIMS - short for BioMedical Imaging Management Solution - which integrates different types of medical data such as images, phenotype data, and genomic data. The system will enable advanced analytics on family trees that are dynamically created by the system to correlate between patients who show similar signs of the disease.

As scientists gain insight into genetic diseases at the molecular level, the critical role played by family history is becoming more apparent at all levels of treatment. However, until now, there has been no complete system for easily collecting, classifying and analyzing family histories for patients suffering from hereditary skeletal diseases like single and multiple exostoses. Unfortunately, most of this information traditionally sits in different hospitals and databases, and in different formats.

The new technology being developed by IBM and the Rizzoli Institute, will enable doctors to call upon all information related to a hereditary disease - including genetic information, observations studied, and imaging data from the perspective of the treatment history for any family members - so diagnosis and treatment becomes faster, less expensive, and more personalized. The project is scheduled to be completed in mid to late 2010.

The system will also build family history records, collect and classify, allowing research into advanced pedigree analytics. Because the disease is hereditary, it's critical to have access to data for all patients that are connected to the same pedigree. For example, when a child is being diagnosed, it's vital for physicians to see observations and clinical/genomic information from the parents, aunts, uncles, and other close relatives. The new system, from IBM Research - Haifa, will take the pedigrees and automatically assign them to groups based on common characteristics. These groupings have the potential to help doctors identify new research directions to better understand the correlation between genotype and the observable characteristics (phenotype) of the disease.

"BioMIMS will provide us with access to an invaluable collection of information so we can compare data to the records obtained from other patients and family members," noted Luca Sangiorgi, Manager of Medical Genetics at Rizzoli. "This holds the promise of significantly deepening our clinical knowledge about rare skeletal diseases, helping us diagnose and treat individual patients more accurately. Bridging the two worlds of information technology and healthcare will help lead the way towards new answers and new cures."

"This project demonstrates how new information technology solutions are allowing medical personal to make more accurate diagnoses and select treatment programs that have a much higher potential for success," noted Boaz Carmeli, manager of IT for healthcare and Life Science group at IBM Research Haifa. "Integrating information from various sources, and realizing the vision of interoperability and cooperation between healthcare organizations, is a surefire key to smarter healthcare solutions and better insight into the treatment of diseases."

The Rizzoli Orthopedic Institute is the second largest institute in the world for the study of rare skeletal diseases. Established in 1896 as a specialized hospital for orthopedics and traumatology, it evolved into a musculoskeletal center that distinguishes itself through pioneering clinical and research advancements. Physicians at the Institute see about 150,000 patients and perform about 18,000 surgeries annually.

IBM's track record of improving healthcare through scientific achievements and collaboration with healthcare companies dates back to the 1950s. In the last decade, IBM has developed a national digital mammography archive with the University of Pennsylvania; developed a clinical trial participant system with the Mayo Clinic; collaborated with Scripps to understand how influenza viruses mutate and proactively develop treatments; collaborated with European universities to develop better methods to decide on antiretroviral therapies for HIV; launched the World Community Grid, which has done projects on cancer, aids, dengue fever; and much more.

For more about the Rizzoli Orthopedic Institute, see www.ior.it.

For more information about IBM, visit www.ibm.com/research.

Related news articles:

Most Popular Now

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...

A Shortcut for Drug Discovery

For most human proteins, there are no small molecules known to bind them chemically (so called "ligands"). Ligands frequently represent important starting points for drug development but this knowledge gap...

New Horizon Europe Funding Boosts Europe…

The European Commission has announced the launch of new Horizon Europe calls, with a substantial funding pool of over €112 million. These calls are aimed primarily at pioneering projects in...

Cleveland Clinic Study Finds AI can Deve…

Cleveland Clinic researchers developed an artficial intelligence (AI) model that can determine the best combination and timeline to use when prescribing drugs to treat a bacterial infection, based solely on...

New AI-Technology Estimates Brain Age Us…

As people age, their brains do, too. But if a brain ages prematurely, there is potential for age-related diseases such as mild-cognitive impairment, dementia, or Parkinson's disease. If "brain age...

With Huge Patient Dataset, AI Accurately…

Scientists have designed a new artificial intelligence (AI) model that emulates randomized clinical trials at determining the treatment options most effective at preventing stroke in people with heart disease. The model...

Radboud University Medical Center and Ph…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Radboud University Medical Center have signed a hospital-wide, long-term strategic partnership that delivers the latest patient monitoring...

GPT-4, Google Gemini Fall Short in Breas…

Use of publicly available large language models (LLMs) resulted in changes in breast imaging reports classification that could have a negative effect on patient management, according to a new international...

ChatGPT fails at heart risk assessment

Despite ChatGPT's reported ability to pass medical exams, new research indicates it would be unwise to rely on it for some health assessments, such as whether a patient with chest...

Study Shows ChatGPT Failed when Challeng…

With artificial intelligence (AI) poised to become a fundamental part of clinical research and decision making, many still question the accuracy of ChatGPT, a sophisticated AI language model, to support...

Virtual Reality Shows Promise in Fightin…

A new study published in JMIR Mental Health sheds light on the promising role of virtual reality (VR) in treating major depressive disorder (MDD). Titled "Examining the Efficacy of Extended...