CD-MEDICS

The overall concept of the CD-MEDICS IP is to develop a technology platform for point-of-care diagnostics, capable of simultaneous genomic and proteomic detection, with embedded communication abilities for direct interfacing with hospital information systems. This will be achieved by exploiting breakthroughs at the confluences of bio-, micro- and nano- technologies to create a low-cost non-invasive intelligent diagnosis system.

This platform will be developed in a modular format, which will allow each module to be developed and exploited individually. The modules will subsequently be integrated to facilitate the desired application. Advances in data communications, molecular biology and biosensor technology, with the integration of nanostructured functional components in macro and microsystems, will facilitate the realisation of a minimally invasive generic platform, which is capable of multi-parametric monitoring and will be interoperable with electronic medical records.

The advantages of integrated biosensor systems include their ease of use, their sensitivity, their inherent selectivity (preventing problems due to interfering substances), their versatility (allowing `in-field¿ use) and their cost effectiveness. Addressing the future health care requirement of an individualised theranostic approach, the specific application that will be demonstrated in this IP will be for the management, monitoring and diagnosis of coeliac disease, with the proposed technology contributing to significant advances in sensitivity and specificity of diagnosis. The technology platform developed, however, could be applied to a variety of clinical screening applications, such as cancer. The radical innovation proposed in this IP will result in a concrete prime deliverable of a technology platform of wide application and unquestionable socio-economic benefit, increasing European competitiveness whilst contributing considerably to the quality of life well being of the population.

For further information, please visit:
http://www.cdmedics.eu

Project co-ordinator:
Universitat Rovira i Virgili

Partners:

  • Institut für Mikrotechnik Mainz GmbH
  • Microfluidic ChipShop GmbH
  • Newcastle University
  • Intracom Telecom solutions
  • Clemens GmbH
  • Micro2Gen
  • Eurospital SpA
  • King's College London Business Ltd
  • INNO-TRAIN Diagnostik GmbH
  • TATAA Biocenter
  • MultiD Analyses AB
  • Finnish Red Cross Blood Service
  • Fondazione IRCCS Policlinico San Matteo
  • University Medical Centre Maribor
  • Valentia Technologies Limited
  • Association of European Coeliac Societies
  • Coeliac UK
  • Asociación de celíacos de Madrid
  • iXscient Ltd.
  • Newcastle upon Tyne Hospitals NHS Foundation Trust

Timetable: from 01/2008 – to 12/2011

Total cost: € 12.796.559

EC funding: € 9.500.000

Programme Acronym: FP7-ICT

Subprogramme Area: Personal health systems for monitoring and point-of-care diagnostics

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...