VPH2

Heart failure accounts for almost a quarter of all admissions to hospital for cardiovascular events, has a high mortality (median survival around 18 months), and places a great burden on all healthcare systems, with estimated direct costs of £905m (1350m) in the United Kingdom in 2000, 2% of total NHS expenditure.

Virtual pathological heart of the virtual physiological human (VPH2) project aims to develop a patient-specific computational modelling and simulation of the human heart to assist the cardiologist and the cardiac surgeon in defining the severity and extent of disease in patients with post-ischemic Left Ventricular Dysfunction (LVD), with or without ischemic mitral regurgitation (IMR). Specific computational methods will allow clinical decision making and planning of the optimal treatment for left ventricle-valve repair. The goal is not only to deploy a fully validated technology to partner clinical institutions, but also to develop a sustainable business model associated to it.

The associated technological aim of the project is to deliver the most advanced software application framework for the development of computer-aided medicine in cardiology and cardiac surgery available in the world, going beyond the state of the art of available models.

This goal will be achieved by integrating some of the leading Open Source software in the area of computer-aided medicine and of computational bioengineering. This framework will be used by VPH2 to realise its objectives, but also by any other future project (academic or industrial) aiming to improve or extend VPH2 objectives.

For further information, please visit:
http://www.vph2.eu

Project co-ordinator:
GMD - Gesellschaft für Medizinische Datenverarbeitung mbH

Partners:

  • Intercon Sp. Z o.o. (Poland)
  • Euro PMS ltd (United Kingdom)
  • Sorin Biomedica Cardio S.r.l. (Italy)
  • SCS S.r.l. (Italy)
  • EREYNITIKO AKADIMAIKO INSTITOUTO TECHNOLOGIAS YPOLOGISTON (Greece)
  • Westfälische Wilhelms-Universität Münster (Germany)
  • PATMOS S.r.l. (Italy)
  • Aminio AB (Sweden)
  • Ecole Polytechnique Fédérale de Lausanne (Switzerland)
  • University of Bedfordshire (United Kingdom)
  • Regione Lombardia (Italy)
  • Quality & Reliability S.A (Greece)

Timetable: from 07/2008 - to 06/2011

Total cost: € 5.180.000

EC funding: € 3.780.000

Programme Acronym: FP7-ICT

Subprogramme Area: Virtual physiological human

Contract type: Collaborative project (generic)


Related news article:

Most Popular Now

Philips Launches HealthSuite System of E…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced the HealthSuite System of Engagement, an integrated, modular set of standards-based capabilities that support the development...

AI may Help Spot Newborns at Risk for Mo…

An artificial intelligence (AI) device that has been fast-tracked for approval by the Food and Drug Administration may help identify newborns at risk for aggressive posterior retinopathy of prematurity (AP-ROP)...

International Scientific Symposium DigiH…

13 November 2020, Pfarrkirchen, Germany DigiHealthDay @DIT-ECRI is going to be a daylong action-packed event targeting primarily academia - from established researchers, to young scientists and students. Following the theme "How...

Siemens Healthineers Introduces Teamplay…

Siemens Healthineers announces market introduction of the teamplay digital health platform. With the teamplay digital health platform Siemens Healthineers paves the way for healthcare providers' digital transformation - facilitating easy...

Digital Heart Model will Help Predict Fu…

In recent times, researchers have increasing found that the power of computers and artificial intelligence is enabling more accurate diagnosis of a patient's current heart health and can provide an...

Fighting Hand Tremors: First comes AI, t…

Robots hold promise for a large number of people with neurological movement disorders severely affecting the quality of their lives. Now researchers have tapped artificial intelligence techniques to build an...

Oxford University Provide Evidence for C…

A team of medical research and bioethics experts at Oxford University are supporting several European governments to explore the feasibility of a coronavirus mobile app for instant contact tracing. If...

Portable AI Device Turns Coughing Sounds…

University of Massachusetts Amherst researchers have invented a portable surveillance device powered by machine learning - called FluSense - which can detect coughing and crowd size in real time, then...

Buddy Healthcare Launches COVID-19 Remot…

Buddy Healthcare wants to help hospitals and healthcare professionals in the battle against the COVID-19. BuddyCare virtual care platform can be used for not only symptom tracking, remote monitoring and...

Preventicus Appoints Ljubisav Matejevic …

Preventicus is proud to announce that the company continues to grow by bringing its unique, comprehensive care management programs for prevention of strokes and cardiovascular events to new international markets...

Philips Ramps Up Production of Critical …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced that it is increasing the production of certain critical care products and solutions to help diagnose and...