Smart Integrated Biodiagnostic Systems for Healthcare

The SmartHEALTH project is designed to develop and deliver the next generation of smart bio-diagnostic systems capable of being fully integrated into healthcare systems in Europe. Driven by key applications in cancer diagnostics, SmartHEALTH will enable enhanced medical diagnosis leading to earlier and more precise results and thus contributing to an increased quality of life.

In addressing the high economic burden of the healthcare sector, prevention, early diagnosis and informed therapeutics are indispensable. Tests must be highly accurate and well integrated into medical management to avoid unnecessary treatment and stress to users.

SmartHEALTH will address these complex issues by developing highly intelligent diagnostic technologies that can be fully integrated into healthcare systems, optimising their impact in management and work practice. Driven by key targeted applications in cancer diagnostics (breast, cervical and colorectal), the project will deliver prototype systems with the aim of moving instrumentation from the laboratory, through to portable devices localised at the "point of care".

Cancers are not 'cured' but 'managed'. One of the major areas of progress with cancers, for example, breast cancer, is the benefit of long term therapies for reducing growth rates. This approach requires regular monitoring such that the efficacy of maintenance therapy is rapidly noted and different therapy can be initiated if and when required. This necessitates regular testing for cancer load. People wish to avoid hospital yet want results interpreted expertly and communicated rapidly. They want tests that do not miss problems yet avoid unnecessary worry. SmartHEALTH aims to develop such integrated cancer monitoring diagnostic devices, eventually useable in localized and more available settings.

The overall SmartHEALTH objectives include:

  • Introduce new SmartHEALTH sensor systems into future healthcare services to improve and better existing services
  • Demonstrate the role of on-line services for pervasive healthcare provision
  • Demonstrate clinical evaluation of systems for targeted applications in breast, cervical and colorectal cancer
  • Assess the economic benefits and means of healthcare provision for the targeted clinical applications
  • Develop new manufacturing and packaging technologies for realisation of unique sensor solutions integrating fluidics, transducers and biological assays
  • Facilitate ethical and social acceptance of SmartHEALTH technology

The SmartHEALTH project will be present at booth F29/2 at ComPaMed, Düsseldorf/Germany, to display a desktop POC instrument for detection of cancer markers, a series of detection chips (Electrochemical Detection Chip, Circular Disc Resonator Sensor, qPCR chip for detection of HPV, qPCR chip for detection of colorectal cancer, and a number of fluidic modules such as RNA-extraction, plasma generation, lyophilisation platforms, or micro mixers.

The project is also organising a workshop on Friday, 20th November, 11:00-13:30, within the ComPaMed Forum which includes a Panel Discussion on "Enabling Point-of-Care Diagnostics: Lab-on-a-Chip innovative Sensor Technologies".

For further information, please visit:
http://www.smarthealthip.com

Related article:

About the SmartHEALTH Integrated Project
Driven by clinical applications and MNT & IST technology, the SmartHEALTH project will develop an open integrated architecture for new biodiagnostic systems to support European companies exploiting bioassays or new application concepts. The initial system has a disposable fluidic cartridge with a desktop base-station linking to the ambient e-Health environment. Ultimately, this system will perform multi-analyte sensing and data/trend analysis for nucleic acids and proteins and will be modular to allow multiple biological sample types to be dealt with. Results will be interpreted and presented using bio-information analysis based on trained neural networks. Systems will be healthcare "user identity-" and "ambient environment-" aware, respecting confidentiality and information access rights. This concept will be miniaturized and cost engineered into a portable and more available system. The project will enable enhanced medical diagnosis, leading to earlier and more precise results contributing to an increased quality of life as well as increasing the competitiveness of the European in vitro diagnostics (IVD) sector. Clinical areas for SmartHEALTH application are in Cancer Diagnostics - breast cancer recurrence monitoring, cervical cancer case finding, and colorectal cancer diagnostics, prognostics and theranostics. Each application includes clinical instrument evaluation and commercial exploitation partners.

The SmartHEALTH Integrated Project is funded by the European Commission under project identifier FP6-2004-IST-NMP-2-016817.

Most Popular Now

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...

Herefordshire and Worcestershire Health …

Herefordshire and Worcestershire Health and Care NHS Trust has successfully implemented Alcidion's Miya Precision platform to streamline bed management workflow across seven community hospitals in Worcestershire. The trust delivers community...

A Shortcut for Drug Discovery

For most human proteins, there are no small molecules known to bind them chemically (so called "ligands"). Ligands frequently represent important starting points for drug development but this knowledge gap...

New Horizon Europe Funding Boosts Europe…

The European Commission has announced the launch of new Horizon Europe calls, with a substantial funding pool of over €112 million. These calls are aimed primarily at pioneering projects in...

Cleveland Clinic Study Finds AI can Deve…

Cleveland Clinic researchers developed an artficial intelligence (AI) model that can determine the best combination and timeline to use when prescribing drugs to treat a bacterial infection, based solely on...