Bioprinting Has Promising Future

Writing in the journal Science, Professor Derby of The School of Materials, looks at how the concept of using printer technology to build structures in which to grow cells, is helping to regenerate tissue. Both inkjet and laser printer technology can be used to build the 3D scaffolds that cells can be grown in and also place the cells in these structures simultaneously. Professor Derby explains how bioprinting works: "Inkjet technology places the structure's material in small droplets, which then solidify. More droplets are then placed on top of the previous ones in a specific pattern. The structure is built using this method which is generally referred to as additive manufacture.

"Laser printing uses light to solidify the structure's material layer upon layer. These methods have allowed us to develop very complex scaffolds which better mimic the conditions inside the body."

The scaffold provides a surface for the cells to adhere, thrive and multiply. Both the scaffold material, composition and its internal architecture control the behaviour and well-being of the cells inside.

In his review article Professor Derby looks at experiments where porous structures have been made through bioprinting. They are then placed in the body to help act as a scaffold to encourage cell growth. The cells colonize the structure and it either dissolves or becomes part of the body.

This type of treatment can help patients suffering from problems such as cavity wounds. Clinical trials are currently taking place around the world to perfect this technology, and Professor Derby says it is moving towards becoming an established form of science.

Professor Derby also looks at how stem cells are being grown in printed structures that have been impregnated with certain chemicals. The chemicals are inserted during the printing process and can determine the type of cell the stem cells develop into. For example stem cells could be programmed to become cells that make up bone tissue or cartilage.

But there are limitations to the technology which is holding back breakthroughs such as the ability to grow an entire organ. Studies have found that it is very difficult to actually print the cells at the same time as making the structure that will house them. The stress on the cell as it goes through both the inkjet and laser process can damage the cell membrane. Cell survival rates have also been variable, ranging from between 40 to 95%.

The technology is also some way off progressing from an experimental platform to clinical practice. Whilst scaffolds are being clinically trialled, actually transplanting cells grown in an external structure into a patient is a more advanced process. It is still not possible at present to guarantee a consistent quality, which is required by medical device regulations.

But research is being carried out to grow external cells into tissue, such as a patch of skin, and transplant that into a patient. Professor Derby is currently working with Ear, Nose and Throat surgeons at the Manchester Royal Infirmary. He wants to use bioprinting to print cells without using a scaffold. The printed cells form a sheet that can be used for grafts inside the body, for example in the mouth or nose.

Professor Derby says: "It is very difficult to transplant even a small patch of tissue to repair the inside of the nose or mouth. Current practice, to transplant the patient's skin to these areas, is regarded as unsatisfactory because the transplants do not possess mucous generating cells or salivary glands. We are working on techniques to print sheets of cells that are suitable for implantation in the mouth and nose."

One area which Professor Derby's review article highlights for the future is the ability to grow structures which can model cancerous tumours. These could then be used to test new drugs, which it's hoped will advance the search for more effective treatments.

Writing the review article has encouraged Professor Derby that there is a strong future for bioprinting and whilst growing organs is still a long way off, the advances being made in this area are very promising.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...