Harnessing grid computing to save women's lives

Breast cancer is the most common cancer in women. In the EU and the US, one in eight will develop it at some point in their lives, and it will kill one in 28. But harnessing the power of the grid could help increase the accuracy of diagnoses.

Mammography examinations save thousands of women's lives every year. However the rate of misdiagnosis can be high – in some instances up to 30%. This is due in part to physical differences across patient populations, differences in equipment and procedures, and difficulty in using computers to help detect changes in breast tissue.

Computer-aided detection of this potentially fatal cancer, especially when used together with the traditional method of visually screening mammograms, can not only shorten the time needed for analysis, but can also help increase the accuracy of diagnoses.

Novel approach to comparative diagnoses
The team in the European IST project MammoGrid, which ended in August 2005, aimed to apply the power of the grid to see if they could more accurately detect breast cancer. The prototype software that resulted is already enabling users – hospitals, doctors, clinicians, radiologists and researchers – to harness the massive capacity of grid computing to run advanced algorithms on digital mammograms, stored Europe-wide.

The project team also developed a geographically distributed, grid-based database of standardised images and associated patient data. Already, there are 30,000 images stored from over 3,000 patients, equally balanced between the University Hospital of Cambridge in the UK and Udine in Italy.

The novelty of the MammoGrid approach lies in the application of grid technologies to medical diagnoses, and in providing the data and tools to enable users to compare new mammograms with existing ones in the grid database. Users can access mammograms from a variety of sources, and also computer-aided detection algorithms to detect micro-calcifications (tiny specks of calcium in the breast that could indicate cancer) and monitor breast density (dense tissue is considered a major risk factor).

Sharing resources and patient data
"The system in its current version allows users to securely share both resources and patient data which has been treated to ensure anonymity," explains project coordinator David Manset of Maat GKnowledge in Madrid, Spain. "It also supports effective co-working and provides the means for powerful comparative analyses through the use of a standard format for mammogram images".

This break-through functionality could lead to major advances in prevention and detection of the disease. It also opens the door to novel, broad-based statistical analyses of the incidence of breast cancer and its different forms.

MammoGrid+ building on the achievements
Since the project ended, a new consortium independent of IST funding has been set up to further develop the prototype and take it closer to market needs. Under Mammogrid+, a new set of partners (including organisations such as CIEMAT (Spain's Energy, Environmental and Technological Research Centre), CERN (Switzerland), SES (health service for the Extremadura region of Spain, representing the hospitals of Infanta Christina, Don Benito and Merida), and the university hospitals of Cambridge and Udine) is building on the results already achieved.

The new project team has set up four separate sites, to simulate the needs of four different hospitals and test the latest project developments. The results from these tests have been evaluated by a panel of two IT experts and five clinicians from the hospitals in Spain’s Extremadura region.

Their feedback is being incorporated into a pre-commercial release of the software (Mammogrid+ version 1.0) in June 2007. This version is being deployed within the five hospitals collaborating in the project – these hospitals will also receive the hardware infrastructure to host the Mammogrid+ suite.

Future plans include broadening the existing database Europe-wide. Already a further hospital, the university hospital of Cork in Ireland, has shown interest in joining the Mammogrid+ network.

"The inclusion of the new hospitals will increase the coverage of the database and make our knowledge more relevant and more accurate," Manset concludes. "This will allow larger and more refined epidemiological studies. In the end, these techniques could help save lives."

Contact:
David Manset
Maat GKnowledge
Calle San Bernardo num 115, 5 izq
E-28015 Madrid
Spain
Tel: +34 68 780 2661
Fax: +34 67 347 9175
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Source: IST Results Portal

For further information, please visit:
www.mammogrid.com

Most Popular Now

Philips Launches HealthSuite Clinical Tr…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced Clinical Trial Accelerator on Philips HealthSuite. This new tailored set of capabilities allows life science organizations to...

New AI Diagnostic can Predict COVID-19 w…

Researchers at King's College London, Massachusetts General Hospital and health science company ZOE have developed an artificial intelligence diagnostic that can predict whether someone is likely to have COVID-19 based...

Biomax Provides AI-Based Semantic Search…

The bioinformatics company Biomax, headquartered in Planegg, Germany, makesitssemantic search platform AILANI available free of charge to research institutes around the world in order to support the rapid and successful...

COVID-19 and Health Tech: Building on th…

Highland Marketing's advisory board met to discuss the health tech response to the coronavirus outbreak. In many areas, this has been hugely impressive: but there are gaps, and there will...

InsurTech Hub Munich and dmac/Digital He…

InsurTech Hub Munich (ITHM) and dmac - Medical Valley Digital Health Application Center part of the Digital Health Hub Nuremberg/Erlangen announce a new cross-industry accelerator for the second half of...

Viveo Health Offers Free Telemedicine So…

Viveo Health, a global e-Health innovator, is making its 'Virtual Office for Doctors' platform free of charge to doctors and other medical professionals worldwide in light of the surge in...

Telemedicine Transforms Response to COVI…

A rapid increase in "virtual" visits during the COVID-19 pandemic could transform the way physicians provide care in the United States going forward, according to a new study led by...

The Dedalus Group, Participated by Ardia…

The Dedalus Group, a leading European company, and one of the worldwide main ones, active in clinical healthcare information systems to support clinical professionals and organizations in order to improve...

Supercomputer Simulations Present Potent…

Several drugs approved for treating hepatitis C viral infection were identified as potential candidates against COVID-19, a new disease caused by the SARS-CoV-2 coronavirus. This is the result of research...

The COVID-19 pandemic reveals the potent…

Two new articles provide insights on the use of telehealth or virtual care in the age of COVID-19 and beyond, pointing to its value to not only prevent contagious diseases...

DigiConnect: e-healthcare - 24/7 Health …

Given the current outbreak of COVID-19, healthcare providers in the Middle East along with the rest of the world are currently putting relentless efforts to provide an innovative offering that...

WiFi SPARK Works with Visionable to Conn…

Seven NHS Trusts are using technology developed by WiFi SPARK in response to an urgent request from leading NHS Trusts to find a way to connect hospital patients with their...