High-Tech 'Whole Body' Scan could Improve Treatment of Bone Marrow Cancer

The new type of magnetic resonance imaging (MRI) scan could improve care for a type of cancer called myeloma and reduce reliance on bone marrow biopsies, which can be painful for patients and often fail to show doctors how far the disease has spread. The research was published in the journal Radiology and was carried out by researchers at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust. It received funding from Cancer Research UK and the National Institute for Health Research Clinical Research Facility in Imaging, with additional funding from the EPSRC.

The new whole-body, diffusion-weighted MRI scans showed the spread of cancer throughout the bone marrow of patients with myeloma - one of the most common forms of blood cancer - more accurately than standard tests. The scans also showed whether the patients were responding to cancer treatments.

In the study 26 patients had whole-body, diffusion-weighted MRI scans before and after treatment. In 86% of cases, experienced doctors trained in imaging were able to correctly identify whether patients responded to treatment. The doctors also correctly identified those patients who weren't responding to treatment 80% of the time.

Using the scanning technique, doctors could pinpoint exactly where the cancer was in the bones, with the results available immediately. Conventional tests include bone marrow biopsies and blood tests but neither shows accurately where the cancer is present in the bones.

The researchers also assessed the visible changes on the MRI scans, using a measurement called the Apparent Diffusion Coefficient (ADC), which records how restricted water movement is within tissues. Changes in this measurement correctly identified treatment response for 24 of 25 myeloma patients.

The new scan was able to visualise cancer in almost all bones in the body, with only the skull remaining difficult to image partly because of the frequency of metal dental implants and fillings. The researchers also found the new methods were suitable for more patients than conventional tests; for example, seven patients had bone marrow biopsies but their samples were found to be inadequate for analysis. Performing another biopsy could be traumatic and painful, and may not provide any new information.

Professor Nandita deSouza, Professor of Translational Imaging at The Institute of Cancer Research and Honorary Consultant at The Royal Marsden, said: "This is the first time we've been able to obtain information from all the bones in the entire body for myeloma in one scan without having to rely on individual bone X-rays. It enables us to measure the involvement of individual bones and follow their response to treatment.

"The results can be visualised immediately; we can look on the screen and see straight away where the cancer is and measure how severe it is. The scan is better than blood tests, which don't tell us in which bones the cancer is located. It also reduces the need for uncomfortable biopsies, which don't reveal the extent or severity of the disease."

Dr Faith Davies, member of the Myeloma Targeted Treatment Team at The Institute of Cancer Research and Honorary Consultant at The Royal Marsden, said: "Myeloma can affect bones anywhere in the body, which is why this study is so important. We've shown that whole body MRI scans can accurately monitor how myeloma patients are responding to treatment, allowing doctors to make more informed decisions. With this new scan, if a treatment isn't working the patient can be moved onto new therapies that might be more effective much more quickly.

"This is a small study, so our next step will be to try out the technology in more patients and refine it. In the future we hope this new tool will help doctors extend the life of more myeloma patients. "

Julia Frater, Cancer Research UK's Senior Cancer Information Nurse, said: "Finding kinder ways to monitor how patients respond to treatment is really important, particularly in the case of myeloma where taking bone marrow samples can be painful. This research demonstrates how an advanced imaging technique could provide a whole-skeleton 'snapshot' to track the response of tumours in individual bones. Finding ways to make treatments gentler and improve the experience for patients is an important focus for Cancer Research UK and the research we fund."

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...