3D Body Mapping could Identify, Treat Organs, Cells Damaged from Medical Conditions

Medical advancements can come at a physical cost. Often following diagnosis and treatment for cancer and other diseases, patients' organs and cells can remain healed but damaged from the medical condition. In fact, one of the fastest growing medical markets is healing and/or replacing organs and cells already treated, yet remain damaged by cancer, cardiovascular disease and other medical issues. The global tissue engineering market is expected to reach $11.5 billion by 2022. That market involves researchers and medical scientists working to repair tissues damaged by some of the world's most debilitating cancers and diseases.

One big challenge remains for the market - how to monitor and continuously test the performance of engineered tissues and cells to replace damaged ones. Purdue University researchers have come up with a 3D mapping technology to monitor and track the behavior of the engineered cells and tissues and improve the success rate for patients who have already faced a debilitating disease. The technology is published in the June 19 edition of ACS Nano.

"My hope is to help millions of people in need," said Chi Hwan Lee, an assistant professor of biomedical engineering and mechanical engineering in Purdue's College of Engineering, who leads the research team. "Tissue engineering already provides new hope for hard-to-treat disorders, and our technology brings even more possibilities."

The Purdue team created a tissue scaffold with sensor arrays in a stackable design that can monitor electrophysiological activities of cells and tissues. The technology uses the information to produce 3D maps to track activity.

"This device offers an expanded set of potential options to monitor cell and tissue function after surgical transplants in diseased or damaged bodies," Lee said. "Our technology offers diverse options for sensing and works in moist internal body environments that are typically unfavorable for electronic instruments."

Lee said the Purdue device is an ultra-buoyant scaffold that allows the entire structure to remain afloat on the cell culture medium, providing complete isolation of the entire electronic instrument from the wet conditions inside the body.

Lee and his team have been working with Sherry Harbin, a professor in Purdue's Weldon School of Biomedical Engineering, to test the device in stem cell therapies with potential applications in the regenerative treatment of diseases.

Their works align with Purdue's Giant Leaps celebration, celebrating the global advancements in health as part of Purdue's 150th anniversary. Health, including disease monitoring and treatment, is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Lee and the other researchers worked with the Purdue Research Foundation Office of Technology Commercializationto patent the new device.

Hyungjun Kim, Min Ku Kim, Hanmin Jang, Bongjoong Kim, Dong Rip Kim, and Chi Hwan Lee.
Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions.
ACS Nano. doi: 10.1021/acsnano.9b02291.

Most Popular Now

AI-Pathway Companion Prostate Cancer fro…

AI-Pathway Companion Prostate Cancer(2), a digital companion from Siemens Healthineers to support clinical decision-making, has recently received the CE mark for use in the clinical pathway of prostate cancer, the...

Philips Launches HealthSuite System of E…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced the HealthSuite System of Engagement, an integrated, modular set of standards-based capabilities that support the development...

AI may Help Spot Newborns at Risk for Mo…

An artificial intelligence (AI) device that has been fast-tracked for approval by the Food and Drug Administration may help identify newborns at risk for aggressive posterior retinopathy of prematurity (AP-ROP)...

Boehringer Ingelheim Launches Patient-Ce…

Boehringer Ingelheim and Carebox Healthcare Solutions announced the recent launch of MyStudyWindow, a digital platform empowering patients, families, caregivers, and doctors to learn about Boehringer Ingelheim's studies by offering information...

Best of Breed: Start with Data in Open P…

Better is attending this year's Digital Health Rewired conference and exhibition at Olympia London alongside Taunton and Somerset NHS Foundation Trust, which is using its open platform to develop an...

Highland Marketing is Sponsoring the Caf…

Highland Marketing will be returning to Digital Health Rewired this year, where it will be sponsoring the café that has been created with an expanded exhibition area. Digital Health Rewired launched...

Siemens Healthineers Introduces Teamplay…

Siemens Healthineers announces market introduction of the teamplay digital health platform. With the teamplay digital health platform Siemens Healthineers paves the way for healthcare providers' digital transformation - facilitating easy...

International Scientific Symposium DigiH…

13 November 2020, Pfarrkirchen, Germany DigiHealthDay @DIT-ECRI is going to be a daylong action-packed event targeting primarily academia - from established researchers, to young scientists and students. Following the theme "How...

Digital Heart Model will Help Predict Fu…

In recent times, researchers have increasing found that the power of computers and artificial intelligence is enabling more accurate diagnosis of a patient's current heart health and can provide an...