Supercomputer Simulations Present Potential Active Substances Against Coronavirus

Several drugs approved for treating hepatitis C viral infection were identified as potential candidates against COVID-19, a new disease caused by the SARS-CoV-2 coronavirus. This is the result of research based on extensive calculations using the MOGON II supercomputer at Johannes Gutenberg University Mainz (JGU). One of the most powerful computers in the world,

MOGON II is operated by JGU and the Helmholtz Institute Mainz. As the JGU researchers explained in their paper recently published at the World Health Organization (WHO) website, they had simulated the way that about 42,000 different substances listed in open databases bind to certain proteins of SARS-CoV-2 and thereby inhibit the penetration of the virus into the human body or its multiplication. "This computer simulation method is known as molecular docking and it has been recognized and used for years. It is much faster and less expensive than lab experiments," said Professor Thomas Efferth of the JGU Institute of Pharmacy and Biomedical Sciences, lead author of the study. "As far as we know, we were the first to have used molecular docking with SARS-CoV-2. And it is fantastic news that we have found a number of approved hepatitis C drugs as promising candidates for treatment."

Using the MOGON II supercomputer, the reseachers made more than 30 billion single calculations within two months and found that compounds from the four hepatitis C drugs simeprevir, paritaprevir, grazoprevir, and velpatasvir have a high affinity to bind SARS-CoV-2 very strongly and may therefore be able to prevent infection. "This is also supported by the fact that both SARS-CoV-2 and the hepatitis C virus are a virus of the same type, a so-called single-stranded RNA virus," explained Efferth. According to the researchers, a natural substance from the Japanese honeysuckle (Lonicera japonica), which has been used in Asia against various other diseases for some time now, might be another strong candidate against SARS-CoV-2.

"Our research results now need to be checked in laboratory experiments and clinical studies," said Efferth and added that molecular docking had already been used successfully in the search for active substances against the coronaviruses MERS-CoV and SARS-CoV.

Kadioglu O, Saeed M, Johannes Greten H, Efferth T.
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.
Bull World Health Organ. E-pub: 21 March 2020. doi: 10.2471/BLT.20.255943

Most Popular Now

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...

A Record Year with More than 800 Exhibit…

9 - 11 April 2024, Berlin, Germany. DMEA 2024 kicks off today, focusing on the key issues in the digital transformation of the healthcare system. From now until 11 April over...