Researcher Engineers a Cutting-Edge Solution for Radiologists and other Medical Staff

Some 2 billion X-rays are performed around the world every year. But the average radiology clinic is understaffed. Radiologists are burdened with a growing workload, allowing little time to comprehensively evaluate images - leading to misdiagnoses and more serious consequences.

Now a Tel Aviv University lab is engineering practical solutions to meet the demands of radiologists. Prof. Hayit Greenspan's Medical Image Processing Lab in the Department of Biomedical Engineering in the TAU Faculty of Engineering has developed a wide variety of tools to facilitate computer-assisted diagnosis of X-rays, CTs and MRIs, freeing radiologists to attend to complex cases that require their full attention and skills.

"There is a shortage of radiologists, and their workload continues to grow. This means that some X-rays are never read or are only read following a long, life-endangering delay," said Prof. Greenspan. "Our goal is to use computer-assisted 'Deep Learning' technologies to differentiate between healthy and non-healthy patients, and to categorize all pathologies present in a single image through an efficient and robust framework that can be adapted to a real clinical setting."

"Deep learning" for accurate diagnosis
Prof. Greenspan discussed her lab's plan to implement "Deep Learning," a new area of Machine Learning research that harnesses artificial intelligence for various scientific fields, at the Israeli Symposium on Computational Radiology held at TAU last December. Her goal is to use Deep Learning to develop diagnostic tools for the automated detection and labelling of pathologies in radiographic images.

Prof. Greenspan's lab is one of only a few labs in the world dedicated to the application of Deep Learning in medicine. She and her team have already developed the technology to support automated chest X-ray pathology identification using Deep Learning, liver lesion detection, MRI lesion analysis and other tasks.

"We have developed tools to support decision-making in radiology with computer vision and machine learning algorithms. This will help radiologists make more accurate, more quantitative and more objective decisions," said Prof. Greenspan. "This is especially crucial when it comes to initial screenings. Such systems can improve accuracy and efficiency in both basic and more advanced radiology departments around the world."

Prof. Greenspan is also exploring the use of "transfer learning" in her research on the medical applications of Deep Learning. "Crowdsourcing was essential for the application of Deep Learning on general image searches such as Google search," said Prof. Greenspan. "But when it comes to medical imaging, there are privacy issues and there's very little comprehensive data available at this point.

"In 'transfer learning,' we use networks originally trained on regular images to categorize medical images. The features and parameters that represent millions of general images provide a good signature for the analysis of medical images as well."

Prof. Greenspan's work is supported by the INTEL Collaborative Research Institute for Computational Intelligence (ICRI-CI) and the Israeli Finance Ministry, in collaboration with Sheba Medical Center. She is also head co-editor of a special issue on "Deep Learning in Medical Imaging," which will be published in the journal IEEE Transactions on Medical Imaging in May.

Tel Aviv University (TAU) is inherently linked to the cultural, scientific and entrepreneurial mecca it represents. It is one of the world's most dynamic research centers and Israel's most distinguished learning environment. Its unique-in-Israel multidisciplinary environment is highly coveted by young researchers and scholars returning to Israel from post-docs and junior faculty positions in the US.

American Friends of Tel Aviv University (AFTAU) enthusiastically and industriously pursues the advancement of TAU in the US, raising money, awareness and influence through international alliances that are vital to the future of this already impressive institution.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...