IBM Turns 100: Marks Numerous Contributions to Healthcare

IBM HealthcareIBM is marking the 100-year anniversary of its founding on June 16, 1911. Few areas of health and medicine have gone untouched by the technology, research and innovation generated by IBM over the past century.

From the first continuous blood separator which led to treatment for leukemia patients, the first heart lung machine to keep patients alive during surgery, the excimer laser used in LASIK eye surgery, to technologies of the future that will one day allow nano-sized particles to enter the bloodstream and fight drug-resistant infections, IBM touches more points in healthcare than anyone else.

IBM has created hardware and applications specifically designed to improve care, improved diagnostics and treatment of disease, and advanced how medical knowledge is shared. This goes far beyond computers. New areas of Research including breakthroughs in gene sequencing and nanotechnology and even innovations in chip design are improving healthcare around the world.

  • In the 1950s, IBM built the first heart-lung machine to be used successfully on a person during surgery.
  • IBM and the National Cancer Institute collaborated in the 1960s to invent the first continuous blood cell separator, which was used for harvesting white cells (and, later, platelets) to treat leukemia patients.
  • Working with the World Health Organization, IBM precisely mapped outbreaks of smallpox in 1976, enabling WHO to allocate its limited personnel and resources to the most urgent locations. The system later became a global model for demographic tracking.
  • IBM invented the method for using excimer lasers that eventually became photorefractive (LASIK) eye surgery.
  • In the early 1990s IBM and the University of Washington built a prototype of the first medical imaging system.
  • IBM's World Community Grid, released in 2004, uses pervasive networking and crowdsourcing to apply supercomputer levels of processing power to urgent healthcare and societal needs such as fighting AIDs, cancer and dengue fever and malaria.
  • Using IBM's Blue Gene supercomputing simulations, researchers at IBM and the University of Edinburgh are currently collaborating on lab experiments to design drugs aimed at preventing the spread of the HIV virus. Until recently, doctors had to make an educated guess about what mix of drugs would work for patients. By simulating the effect of drug cocktails virtually, IBM is helping patients and breaking new barriers in personalized medicine.
  • IBM is currently working with Roche on a DNA Transistor, a high-tech and low-cost way of reading the human genome sequence. This technology may soon be used to create better patient profiles, tailor-made diagnoses and treatments informed by genetics-driving down the cost of healthcare while drastically improving quality of care and quality of life.

Using principles and technologies from computing, physics, material sciences and chemistry, IBM Research has a track record of successfully transferring technology to create new solutions for healthcare. The company spends more than $6B a year on R&D, much of it on healthcare, and IBM is one of the few technology companies with large teams of physicians and other clinicians on staff to ensure we are addressing healthcare's most pressing needs.

Related news articles:

About IBM
For more information about IBM, visit: http://www.ibm.com.

Most Popular Now

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...

A Record Year with More than 800 Exhibit…

9 - 11 April 2024, Berlin, Germany. DMEA 2024 kicks off today, focusing on the key issues in the digital transformation of the healthcare system. From now until 11 April over...