Cardiologists Use 3-D Printing to Personalize Treatment for Heart Disease

University of Melbourne doctors and engineers are using supercomputers to create 3D models from patients with heart disease, with photos from a camera thinner than a human hair. The images, gathered during a routine angiogram, are fed into a supercomputer. Within 24 hours, a model of a person’s artery is 3D printed. This gives cardiologists crucial information about the behaviour of blood flow and the precise structure of the artery from the inside.

It also helps them make decisions about the best stent (the device used to hold open a collapsed or blocked artery) to insert.

The technique can also detect ‘hot spots’ for plaque, the waxy substance that builds up in arteries and causes heart disease. Some of these plaques have been difficult to find using traditional techniques.

The potential use of supercomputers for personalised medicine is described in an academic paper published today in the European Heart Journal.

Heart disease remains the number one killer in Australia, affecting one in every six adults.. Every nine minutes, a person suffers a heart attack. New techniques to predict plaque build up in the heart will be essential to reduce this toll.

Lead author, University of Melbourne Associate Professor Peter Barlis, is an interventional cardiologist with St Vincent's and Northern Hospitals.

"Using our ultrasensitive heart scans combined with models derived using supercomputers, we are now able to print out segments of the patient's arteries and hope to tailor devices to fit them perfectly," Assoc Prof Barlis said.

"No two arteries are shaped the same. We're all different, with arteries that have different branches and sizes, tapering from larger to smaller. And much like debris accumulates along a riverbank, plaque can cling to certain areas of a person's artery. So this technology really gives us a clearer picture of those areas.

"We ideally want to use models to predict the best type of stent for a patient. Once this process is streamlined, we can have a patient on the table and an artery 3D printed and modeled to guide the procedure."

Identifying which plaques go on to cause a heart attack remains the 'holy grail' of cardiology.

"Using a super-high resolution camera, known as optical coherence tomography (OCT), to scan the insides of the heart arteries has made it easier to image cholesterol plaques, but it still isn't clear which of these plaques will go on to cause heart attacks.

"If we can identify these high-risk plaques more accurately and much earlier, we may be able to prevent heart attacks before they occur."

Associate Professor Barlis introduced OCT to Australia in 2009 and has been refining the technology to benefit cardiac patients since. He says 3D modelling has very promising potential to predict where plaques could form and will ultimately help cardiologists predict heart attacks.

Co-author and University of Melbourne researcher Dr Vikas Thondapu says the clues about dangerous cholesterol plaques lie in certain disturbances in blood flow patterns.

"Our work involves using supercomputers to simulate blood flow in the arteries. The goal is to use blood flow patterns and disturbances to potentially predict the future development of high-risk plaques," Dr Thondapu said.

Assoc Prof Barlis and his team now have two ARC grants to work with the University's Engineering School, to find a biocompatible polymer to 3D print heart stents to precisely match a person's physical makeup, reducing the risk of stent collapse or complications.

They are also interested in new polymers that will allow the stent to slowly disintegrate over time and that can deliver drugs directly to the location of the plaque.

The Imperial College in London and Harvard University in Boston are collaborating with the University of Melbourne on this pioneering research.

Vikas Thondapu, Christos V. Bourantas, Nicolas Foin, Ik-Kyung Jang, Patrick W. Serruys, Peter Barlis
Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling
European Heart Journal Feb 2016, DOI: 10.1093/eurheartj/ehv689

Most Popular Now

SAP IoT Startup Accelerator

The SAP IoT Startup Accelerator is a structured co-innovation program for selected B2B startups focusing on the Internet of Things. The Accelerator helps startups grow and scale their businesses alongside...

Read more

Paving the Way for eHealth Interoperabil…

The EURO-CAS project launched operations today to deliver the eHealth Conformity Assessment Scheme for Europe in 2018. This scheme will help European health systems assess the conformity of eHealth products...

Read more

SkinVision Unveils Breakthrough Algorith…

Dutch mobile health startup SkinVision has revealed its new algorithm that can detect most common forms of deadly skin cancer. Previously focused on detecting melanoma skin cancer, the app can...

Read more

eHealth Hub Solution Match Call: Hospita…

Solution Match is one of the services offered by the EU-funded initiative eHealth Hub, intending to promote and boost up commercialization. The eHealth Hub aims to provide long-term support to...

Read more

Wearable AI System can Detect a Conversa…

It's a fact of nature that a single conversation can be interpreted in very different ways. For people with anxiety or conditions such as Asperger's, this can make social situations...

Read more

Biovision World Life Science Forum 2017

4 - 6 April 2017, Lyon, France. Biovision World Life Science Forum is fostering a unique approach to meet, connect and collaborate between international decision-makers from the academic, civil society, policy-making...

Read more

Doctrina Raises €1,020,000 of New Capita…

Doctrina, a start-up company transforming the traditional transfer of knowledge between pharmaceutical companies and pharmacies, has raised a total of €1,020,000 in series A funding. The investment will enable Doctrina...

Read more

DIY Live Cell Imaging Using a Smartphone

A recent study from Uppsala University shows how smartphones can be used to make movies of living cells, without the need for expensive equipment. The study is published in the...

Read more

Horder Healthcare Uses IMS MAXIMS Electr…

Healthcare provider Horder Healthcare is to deploy an electronic patient record (EPR) from software provider IMS MAXIMS, in order to improve care for thousands of patients and facilitate its digital...

Read more

Brain-Computer Interface Allows Complete…

A brain-computer interface that can decipher the thoughts of people who are unable to communicate could revolutionize the lives of those living with complete locked-in syndrome according to a new...

Read more

Pitch Your Digital Health Solution at th…

The second eHealth Roadshow, promoted by the new EU-funded eHealth Hub project, will take place on the 6th of April in Stuttgart, Germany, in the frame of the Medtec Europe...

Read more

Deep Learning in Healthcare Summit

28 - 01 March 2017, London, UK. Discover advances in deep learning tools and techniques from the world's leading innovators across industry, academia and the healthcare sector. Learn from the experts...

Read more
(HEALTH IT) SPACE - Take a look at who has just Joined