Gaming Camera could Aid MS Treatment

A commonly used device found in living rooms around the world could be a cheap and effective means of evaluating the walking difficulties of multiple sclerosis (MS) patients. The Microsoft Kinect is a 3D depth-sensing camera used in interactive video activities such as tennis and dancing. It can be hooked up to an Xbox gaming console or a Windows computer.

A team of researchers led by McGill University postdoctoral fellow Farnood Gholami, supervised by Jozsef Kövecses from the Department of Mechanical Engineering and Centre for Intelligent Machines, collaborated with Daria Trojan, a physiatrist in the Department of Neurology and Neurosurgery working at the Montreal Neurological Institute and Hospital, to test whether the Kinect could detect the differences in gait of MS patients compared to healthy individuals.

In current clinical practice, the walking movement of MS patients is usually assessed by their doctors, and subjective evaluations may distort results: two different clinicians may give the same patient different evaluations. Using a camera that detects movement and computer algorithms that quantify the patients' walking patterns can reduce potential for human error.

Gholami captured the movement of 10 MS patients and 10 members of an age-and-sex-matched control group using the Kinect device. The MS patients had previously been assessed for gait abnormalities using the traditional clinician method.

Using the data, the team then developed computer algorithms that quantified gait characteristics of MS patients and healthy people. The investigators found that gait characteristics measured with the Kinect camera and analyzed with the developed algorithms were reproducible when assessed at one visit and were different between MS patients and the healthy individuals. Moreover, the gait characteristics of MS patients obtained by the algorithm were correlated with clinical measures of gait. In addition, the algorithms could mathematically define the characteristics of gait in MS patients at different severity levels, accurately determining his/her level of gait abnormality.

Gholami says he became interested in using motion capture technology for clinical purposes as a PhD student, but the equipment he was using at the time was very expensive, difficult to use, and non-portable, making widespread clinical use prohibitive. The Kinect device gave him an inexpensive tool to use that appears to be still accurate enough to do the job.

"This tool may help the clinician provide a better diagnosis of gait pathology, and may be used to observe if a prescribed medication has been effective on the gait of the patient or not," he says. "Our developed framework can likely be used for other diseases causing gait abnormalities as well, for instance Parkinson's disease."

Trojan says the tool could be useful "to assess treatment effects of certain interventions such as rehabilitation or medication, and to document MS disease progression as reflected by gait deterioration. It may also be useful as a measure in clinical trials."

Gholami says the next step is to conduct a study with a larger group of MS patients, including evaluation in a gait laboratory, using a newer version of the Kinect device that promises to improve accuracy.

This work was completed in collaboration with Behnood Gholami at AreteX Systems Inc., Hoboken, NJ, and Wassim M. Haddad at Georgia Institute of Technology, Atlanta, GA.

The full research paper was published in the IEEE Journal of Biomedical and Health Informatics on July 21, 2016. This research was made possible with funds from the Natural Sciences and Engineering Research Council of Canada.

F. Gholami, D. Trojan, J. Kovecses, W. Haddad, B. Gholami.
A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients.
IEEE Journal of Biomedical and Health Informatics, vol.PP, no.99, pp.1-1, doi: 10.1109/JBHI.2016.2593692

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...