Researchers 3-D Print Lifelike Artificial Organ Models

A team of researchers led by the University of Minnesota has 3D printed lifelike artificial organ models that mimic the exact anatomical structure, mechanical properties, and look and feel of real organs. These patient-specific organ models, which include integrated soft sensors, can be used for practice surgeries to improve surgical outcomes in thousands of patients worldwide.

The research was published today in the journal Advanced Materials Technologies. The researchers are submitting a patent on this technology.

"We are developing next-generation organ models for pre-operative practice. The organ models we are 3D printing are almost a perfect replica in terms of the look and feel of an individual's organ, using our custom-built 3D printers," said lead researcher Michael McAlpine, an associate professor of mechanical engineering in the University of Minnesota's College of Science and Engineering and a 2017 recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE).

"We think these organ models could be 'game-changers' for helping surgeons better plan and practice for surgery. We hope this will save lives by reducing medical errors during surgery," McAlpine added.

McAlpine said his team was originally contacted by Dr. Robert Sweet, a urologist at the University of Washington who previously worked at the University of Minnesota. Sweet was looking for more accurate 3D printed models of the prostate to practice surgeries.

Currently, most 3D printed organ models are made using hard plastics or rubbers. This limits their application for accurate prediction and replication of the organ's physical behavior during surgery. There are significant differences in the way these organs look and feel compared to their biological counterparts. They can be too hard to cut or suture. They also lack an ability to provide quantitative feedback.

In this study, the research team took MRI scans and tissue samples from three patients' prostates. Researchers tested the tissue and developed customized silicone-based inks that can be "tuned" to precisely match the mechanical properties of each patient's prostate tissue. These unique inks were used in a custom-built 3D printer by researchers at the University of Minnesota. The researchers then attached soft, 3D printed sensors to the organ models and observed the reaction of the model prostates during compression tests and the application of various surgical tools.

"The sensors could give surgeons real-time feedback on how much force they can use during surgery without damaging the tissue," said Kaiyan Qiu, a University of Minnesota mechanical engineering postdoctoral researcher and lead author of the paper. "This could change how surgeons think about personalized medicine and pre-operative practice."

In the future, researchers hope to use this new method to 3D print lifelike models of more complicated organs, using multiple inks. For instance, if the organ has a tumor or deformity, the surgeons would be able to see that in a patient-specific model and test various strategies for removing tumors or correcting complications. They also hope to someday explore applications beyond surgical practice.

"If we could replicate the function of these tissues and organs, we might someday even be able to create 'bionic organs' for transplants," McAlpine said. "I call this the 'Human X' project. It sounds a bit like science fiction, but if these synthetic organs look, feel, and act like real tissue or organs, we don't see why we couldn't 3D print them on demand to replace real organs."

Kaiyan Qiu, Zichen Zhao, Ghazaleh Haghiashtiani, Shuang-Zhuang Guo, Mingyu He, Ruitao Su, Zhijie Zhu, Didarul B Bhuiyan, Paari Murugan, Fanben Meng, Sung Hyun Park, Chih-Chang Chu, Brenda M Ogle, Daniel A Saltzman, Badrinath R Konety, Robert M Sweet, Michael C McAlpine.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.
Adv. Mater. Technol. 2365-709X. doi: 10.1002/admt.201700235.

Most Popular Now

Open Call SC1-DTH-12-2020: Use of Real-W…

The number of people with chronic illness is growing and almost half of them have multiple chronic conditions. Patients with complex chronic conditions (CCCs) have chronic multi-morbidities or chronic disease...

China to Take on Leading Role in Medical…

Asia, in particular China, has been advancing significantly on its way to a key role in geopolitics, says correspondent Frank Sieren - and towards spearheading developments in medical technologies. At...

Doctors Give Electronic Health Records a…

The transition to electronic health records (EHRs) was supposed to improve the quality and efficiency of healthcare for doctors and patients alike - but these technologies get an "F" rating...

Artificial Intelligence Algorithm can Le…

Artificial Intelligence can be used to predict molecular wave functions and the electronic properties of molecules. This innovative AI method developed by a team of researchers at the University of...

Preventive Health Care Via App

Demand for apps for preventive health care is growing all the time. Particularly popular are diagnostic assistants that record physiological and fitness data. However, there are data protection concerns with...

Bittium Exhibits its Innovative High-Tec…

Bittium exhibits its innovative products and solutions for cardiology and neurology at Medica 2019, the leading international trade fair for the medical sector, on November 18 - 21 in Dusseldorf...

MEDICA 2019 + COMPAMED 2019 Due to Launc…

18 - 21 November 2019, Düsseldorf, Germany. From Monday until Thursday, the entire medical world and health care sector will once again meet in Düsseldorf. With a record participation of a...

Artificial Intelligence-Based Algorithm …

Traumatic brain injury (TBI) is a significant global cause of mortality and morbidity with an increasing incidence, especially in low-and-middle income countries. The most severe TBIs are treated in intensive...

A Mobile App for Managing Mobile Medical…

Beginning of March 2019, Merci Charity Boutique association based in Bucharest, Romania started testing the "Mobile app for mobile medical units and cabinets", which helps the mobile dental practice to...

#FH2019 - The Leading International Conf…

13 - 15 November 2019, Berlin, Germany. This year the German capital will host again the main conference dedicated to Digital Health: Frontiers Health 2019, which will be held from the...

MEDICA and COMPAMED Hold their Own in a …

18 - 21 November 2019, Düsseldorf, Germany. The demand market for medical technology and medical products is becoming increasingly challenging and discriminating worldwide. Providers are adapting to this on a flexible...

Philips Launches its First Clinical Prod…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced the U.S. debut of its new cognitive assessment platform IntelliSpace Cognition. Leveraging the power of artificial intelligence...