Lung Cancer Drug Resistance Explained by Computer Simulations

Scientists from the Universities of Bristol and Parma, Italy, have used molecular simulations to understand resistance to osimertinib - an anticancer drug used to treat types of lung cancer. Osimertinib binds tightly to a protein, epidermal growth factor receptor (EGFR), which is overexpressed in many tumours. EGFR is involved in a pathway that signals for cell proliferation, and so is a target for drugs. Blocking the action of EGFR (inhibiting it) can switch it off, and so is a good way to treat the disease.

Osimertinib is an effective anticancer drug that works in this way. It is used to treat non-small-cell lung cancer (NSCLC), in cases where the cancer cells have a particular (T790M) mutant form of EGFR.

It is a so-called 'third-generation' EGFR inhibitor, which was approved as a cancer treatment in 2017. Osimertinib is a covalent inhibitor: as such, it binds irreversibly to EGFR by forming a chemical bond with it.

Although patients generally respond well to osimertinib, most acquire drug resistance within one year of treatment, so the drug stops working.

Drug resistance arises because the EGFR protein mutates, so that the drug binds less tightly.

One such mutation, called L718Q, was recently discovered in patients in the clinic by the Medical Oncology Unit of the University Hospital of Parma.

In this drug resistant mutant, a single amino acid is changed. Unlike other drug resistant mutants, it was not at all clear how this change stops the drug from binding effectively, information potentially crucial in developing new drugs to overcome resistance.

Now, a collaboration between medicinal and computational chemists and clinical oncologists has revealed exactly how subtle changes in the protein target cause drug resistance.

Using a range of advanced molecular simulation techniques, scientists from the Universities of Bristol and Parma, Italy, showed that the structure of the mutant protein changes in a way that stops the drug reacting and binding to it.

Adrian Mulholland, Professor of Chemistry at the University of Bristol, said: "This work shows how molecular simulations can reveal mechanisms of drug resistance, which can be subtle and non-obvious.

"In particular, here we've used combined quantum mechanics/molecular mechanics (QM/MM) methods, which allow us to study chemical reactions in proteins.

"This is crucial in investigating covalent inhibitors, which react with their biological targets, and are the focus of growing interest in the pharmaceutical industry."

His collaborators, Professor Alessio Lodola and Professor Marco Mor of the Drug Design and Discovery group at the University of Parma, added: "It was an exciting experience to work closely with clinical colleagues who identified the mutant, and to help analyse its effects.

"Now the challenge is to exploit this discovery in the development of novel drugs targeting EGFR mutants for cancer treatment in future."

D Callegari, KE Ranaghan, CJ Woods, R Minari, cM Tiseo, cM Mor, AJ Mulhollandb, A Lodola.
L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib.
Chemical Science. doi: 10.1039/C7SC04761D.

Most Popular Now

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...

ChatGPT Extracts Data for Ischaemic Stro…

In an ischaemic stroke, an artery in the brain is blocked by blood clots and the brain cells can no longer be supplied with blood as a result. Doctors must...

Experts Propose Specific and Suited Guid…

Current Artificial Intelligence (AI) models for cancer treatment are trained and approved only for specific intended purposes. GMAI models, in contrast, can handle a wide range of medical data including...

A Record Year with More than 800 Exhibit…

9 - 11 April 2024, Berlin, Germany. DMEA 2024 kicks off today, focusing on the key issues in the digital transformation of the healthcare system. From now until 11 April over...