Deep Learning Transforms Smartphone Microscopes into Laboratory-Grade Devices

Researchers at the UCLA Samueli School of Engineering have demonstrated that deep learning, a powerful form of artificial intelligence, can discern and enhance microscopic details in photos taken by smartphones. The technique improves the resolution and color details of smartphone images so much that they approach the quality of images from laboratory-grade microscopes.

The advance could help bring high-quality medical diagnostics into resource-poor regions, where people otherwise do not have access to high-end diagnostic technologies. And the technique uses attachments that can be inexpensively produced with a 3-D printer, at less than $100 a piece, versus the thousands of dollars it would cost to buy laboratory-grade equipment that produces images of similar quality.

Cameras on today's smartphones are designed to photograph people and scenery, not to produce high-resolution microscopic images. So the researchers developed an attachment that can be placed over the smartphone lens to increase the resolution and the visibility of tiny details of the images they take, down to a scale of approximately one millionth of a meter.

But that only solved part of the challenge, because no attachment would be enough to compensate for the difference in quality between smartphone cameras' image sensors and lenses and those of high-end lab equipment. The new technique compensates for the difference by using artificial intelligence to reproduce the level of resolution and color details needed for a laboratory analysis.

The research was led by Aydogan Ozcan, Chancellor's Professor of Electrical and Computer Engineering and Bioengineering, and Yair Rivenson, a UCLA postdoctoral scholar. Ozcan's research group has introduced several innovations in mobile microscopy and sensing, and it maintains a particular focus on developing field-portable medical diagnostics and sensors for resource-poor areas.

"Using deep learning, we set out to bridge the gap in image quality between inexpensive mobile phone-based microscopes and gold-standard bench-top microscopes that use high-end lenses," Ozcan said.

"We believe that our approach is broadly applicable to other low-cost microscopy systems that use, for example, inexpensive lenses or cameras, and could facilitate the replacement of high-end bench-top microscopes with cost-effective, mobile alternatives."

He added that the new technique could find numerous applications in global health, telemedicine and diagnostics-related applications.

The researchers shot images of lung tissue samples, blood and Pap smears, first using a standard laboratory-grade microscope, and then with a smartphone with the 3D-printed microscope attachment. The researchers then fed the pairs of corresponding images into a computer system that "learns" how to rapidly enhance the mobile phone images. The process relies on a deep-learning-based computer code, which was developed by the UCLA researchers.

To see if their technique would work on other types of lower-quality images, the researchers used deep learning to successfully perform similar transformations with images that had lost some detail because they were compressed for either faster transmission over a computer network or more efficient storage.

The study was published in ACS Photonics, a journal of the American Chemical Society. It builds upon previous studies by Ozcan's group that used deep learning to reconstruct holograms and improve microscopy.

Ozcan also holds a faculty appointment in the department of surgery at the David Geffen School of Medicine at UCLA, and is an associate director of the California NanoSystems Institute.

Yair Rivenson, Hatice Ceylan Koydemir, Hongda Wang, Zhensong Wei, Zhengshuang Ren, Harun Günaydın, Yibo Zhang, Zoltán Göröcs, Kyle Liang, Derek Tseng, Aydogan Ozcan.
Deep Learning Enhanced Mobile-Phone Microscopy.
ACS Photonics. doi: 10.1021/acsphotonics.8b00146.

Most Popular Now

MSD is Looking for a Digital Health Solu…

MSD Lebanon is looking for an external partner to co-create a digital solution that helps oncologists to stay updated with relevant clinical content about cancer. The solution should consider several...

Brain-Computer Interface Enables People …

Tablets and other mobile computing devices are part of everyday life, but using them can be difficult for people with paralysis. New research from the BrainGate consortium shows that a...

Diagnosing a Heart Attack at 10,000 Mete…

A passenger suddenly has chest pain on board. The crew asks for a doctor; when present, this is not always a cardiologist. The pilot has to decide if a flight...

Medical Experts Once Again Were "Sp…

12 - 15 November 2018, Düsseldorf, Germany. Once again, decision makers of the international healthcare industry were "spoiled for choice" when it came to the themes at the world’s largest medical...

GenePlanet Presents its Innovative Healt…

GenePlanet, the Swiss-backed biotech company present in more than 30 countries worldwide, is attending MEDICA, the leading international trade fair for the medical sector that takes place in Düsseldorf, Germany...

AI-Pathway Companion from Siemens Health…

At the Congress of the Radiological Society of North America (RSNA 2018) in Chicago, USA, Siemens Healthineers is presenting AI-Pathway Companion* for the first time. It is a clinical decision...

Philips Latest 'Future Health Index' Rep…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced publication of the latest Future Health Index (FHI) report. 'Telehealth: delivering value across institutional and geographical borders...

AI System may Accelerate Search for Canc…

Searching through the mountains of published cancer research could be made easier for scientists, thanks to a new AI system. The system, called LION LBD and developed by computer scientists...

AOK Counts on the Orchestra eHealth Suit…

The AOK community builds a digital health network for its insurants and thus takes on a pioneering task among German health insurances. Through the digital health network its 25 million...

New China and US Studies Back Use of Pul…

Fast and easy blood pressure monitoring could soon be at your fingertips - literally - thanks to new University of British Columbia research that showed blood pressure (BP) can be...

Australian Health Region Boosts Patient …

Patients and clinicians will benefit from easy access to critical real-time patient information at the bedside after Australian population health services provider ACT Health signed a further contract with Patientrack's...