Wearable Device can Predict Older Adults' Risk of Falling

Every year, more than one in three individuals aged 65 and older will experience a fall. Falls are the most common cause of injury in older adults, and can create ongoing health problems. But treatment and awareness of falling usually happens after a fall has already occurred. As a part of the NIH's Women's Health Initiative, researchers wanted to see if they could predict an individual's risk of falling so that preventative measures could be taken to reduce this risk.

New analysis has now made this prediction a reality.

The study involved 67 women, all over the age of 60, who were tested on their walking ability and asked about the number of falls they had experienced in the past year. Participants also wore a small device with motion sensors that measured their walking patterns for one week.

Bruce Schatz, head of the Department of Medical Information Science in the University of Illinois College of Medicine at Urbana-Champaign and faculty member of the IGB's Computing Genomes for Reproductive Health research theme, was asked to analyze the data from the study. He worked with colleagues from the Women's Health Initiative, including David Buchner from the Department of Kinesiology & Community Health, while supervising Illinois graduate students Andrew Hua and Zachary Quicksall, associated with the University of Illinois College of Medicine.

They found that data extracted automatically from the devices could accurately predict the participants' risk of falling, as measured by physical examinations of unsteadiness in standing and walking. Their findings were published in Nature Digital Medicine.

"Our prediction showed that we could very accurately tell the difference between people that were really stable and people that were unstable in some way," Schatz said.

Studies have shown that older individuals fall differently than younger individuals. Younger people fall if they misjudge something, such as a slippery surface. But older adults fall because their bodies are unstable, causing them to lose balance when walking or become unsteady when standing up and sitting down.

This difference gave researchers the idea that they might be able to measure this instability. The device they used, called an accelerometer, was able to measure the user's walking patterns and how unsteady they were. They combined this measurement with the individual's fall history to determine the risk of falling in the future.

Being able to predict the fall risk is significant because many older adults often don't pay attention to the fact that they are unstable until after they fall. But if they know they're at risk, they can do rehabilitation exercises to increase their strength and reduce their chance of falling.

Schatz sees the successful outcome of this research as a sign that, in the future, more wearable devices, or even smartphone apps, will be able to measure walking patterns and warn users of their fall risk.

Most cellphones today already have an accelerometer, the same sensor that was used in this study. Schatz envisions a future where everyone over 60 would have a phone app that constantly records their motion, requiring no input from the user. If the user's walking becomes unstable, the app could notify the user or their doctor, and they could begin preventative exercises.

"I work a lot with primary care physicians, and they love this (idea), because they only see people after they start falling," Schatz said. "At that point, it's already sort of too late."

This research relates to the larger idea of preventative medicine -- health care that can warn patients about health problems so they can take action and better manage the problem.

Predictions like these are difficult to make, but research experiments like this one make Schatz hopeful that progress is being made. More federally funded studies monitoring larger populations are being conducted more often, so predictive models developed for existing studies, such as the Women's Health Initiative, are important for future research. Additionally, wearable devices like those used in this study are becoming cheaper and more widely available.

These developments give Schatz hope that a future with successful predictive medicine is coming.

"The question is: is it known how to take the signal, how to take whatever comes out of (a device), and predict something that's useful?" he said. "I believe strongly the answer is yes."

Schatz sees value in doing fundamental research that could solve major health problems, like falls in older adults. Most people are aware that it's a common problem, but Schatz said there is a sense of hopelessness about this issue - if it happens to so many older adults, then what can be done?

"There is a solution which is completely workable and isn't very expensive, but requires different behavior," Schatz said. "That message is not getting out."

He predicts that the quality of life among older adults will improve as medicine and health care become more predictive and effective.

"The future is different," Schatz said. "And it's because of projects like this."

Andrew Hua, Zachary Quicksal, Chongzhi Di, Robert Motl, Andrea Z LaCroix, Bruce Schatz, David M Buchner.
Accelerometer-based predictive models of fall risk in older women: a pilot study.
npj Digital Medicinevolume 1, Article number: 25 (2018). doi: 10.1038/s41746-018-0033-5.

Most Popular Now

Apple Health Records Available for Allsc…

Allscripts (NASDAQ: MDRX) announced that Apple Health Records is now available for Allscripts Sunrise™, TouchWorks® and Professional EHR™ clients and their patients. Health Records brings together hospitals, clinics and the...

Philips Signs Agreement to Create Taiwan…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced that Taipei Veterans General Hospital (TPVGH) will utilize the Philips IntelliSite Pathology Solution to transform its...

Robotic Thread is Designed to Slip throu…

MIT engineers have developed a magnetically steerable, thread-like robot that can actively glide through narrow, winding pathways, such as the labrynthine vasculature of the brain. In the future, this robotic...

St Helens and Knowsley Advance with Ambi…

St Helens and Knowsley Teaching Hospitals NHS Trusthas successfully gone live with System C’s CareFlow Vitals as part of its ambitious strategy to accelerate digitisation and become a digital exemplar...

Machine Learning Improves the Diagnosis …

Researchers from Charité - Universitätsmedizin Berlin and the German Cancer Consortium (DKTK) have successfully solved a longstanding problem in the diagnosis of head and neck cancers. Working alongside colleagues from...

Using a Smartphone to Detect Norovirus

A little bit of norovirus - the highly infectious microbe that causes about 20 million cases of food poisoning in the United States each year - goes a long way...

Experimental Validation Confirms the Abi…

Insilico Medicine, a global leader in artificial intelligence for drug discovery, today announced the publication of a paper titled, "Deep learning enables rapid identification of potent DDR1 kinase inhibitors," in...

Computer Model could Help Test New Sickl…

A team of Brown University researchers has developed a new computer model that simulates the way red blood cells become misshapen by sickle cell disease. The model, described in a...

The Future of Mind Control

Electrodes implanted in the brain help alleviate symptoms like the intrusive tremors associated with Parkinson's disease. But current probes face limitations due to their size and inflexibility. "The brain is...

Medical Informatics Europe Conference 20…

28 April - 1 May 2020, Geneva, Switzerland. The European Federation of Medical Informatics (EFMI) presents the 30th Medical Informatics Europe conference (MIE) at the Geneva International Conference Center (CICG). This...