Brigham Researchers Develop Smartphone-Based Ovulation Test

Investigators from Brigham and Women's Hospital are developing an automated, low-cost tool to predict a woman's ovulation and aid in family planning. Capitalizing on advancements in several areas, including microfluidics, artificial intelligence (AI) and the ubiquity of smartphones, the team has built an ovulation testing tool that can automatically detect fern patterns - a marker of ovulation - in a saliva sample. The team evaluated the performance of the device using artificial saliva in the lab and validated results in human saliva samples from six subjects, observing greater than 99 percent accuracy in effectively predicting ovulation. The team's results are published in Lab on a Chip.

"Before we started this project, we weren't aware that such a need existed. When we published last year on a technology for analyzing sperm to detect male infertility, we were approached by those who had read about our work and were wondering if we could develop a smart-phone based system to provide ovulation testing at home," said corresponding author Hadi Shafiee, PhD, principal investigator at the BWH Division of Engineering in Medicine and Renal Division of Medicine. "Our study indicates that an accurate, automated and low-cost test is indeed possible."

Current methods for monitoring woman's fertility are often costly or subjective. These methods include ovulation detection through luteinizing hormone (LH) level determination (a clinical blood test or at-home urine "dip stick" test), rectal or basal body temperature analysis, cervical mucus characterization and salivary ferning analysis. Salivary ferning refers to the unique appearance of dried saliva from a woman who is ovulating - when collected on a glass slide, saliva takes on a crystallized structure that resembles fern leaves. While relatively inexpensive and simple, salivary fern analysis is highly subjective; when performed by the lay consumer, this approach is prone to misinterpretation.

To overcome this challenge, Shafiee and colleagues developed an automated process for detecting ferning in a saliva sample. The developed AI algorithm was pre-trained with 1.4 million ImageNet images and retrained with more than 1500 salivary ferning images to be able to classify saliva images into two categories: Ovulating and non-ovulating samples.

The team then evaluated the system's ability to differentiate ovulating and non-ovulating human saliva samples from six subjects. The women collected and tested their saliva samples using the cellphone system during both ovulating and non-ovulating phases of their menstrual cycle (results were confirmed using a urine test). To perform the test, saliva was collected on a microfluidic device, smeared, and left to air dry. The microfluidic device with the air-dried sample was then inserted into a 3-D printed optical attachment affixed to a smartphone. The software then analyzed the fern patterns, correctly identifying ovulation in 99 percent of samples and non-ovulation in 100 percent of the samples.

"One of the biggest advantages to this method is cost - whereas the cost of non-reusable urine stick tests can add up to $210 to $240 over the course of six months, our device represents the possibility of a one-time purchase," said co-author Manoj Kumar Kanakasabapathy, a senior research assistant in the Shafiee laboratory. "Beyond human ovulation, there are applications here as well for animal breeding and even for dry eye disease, which can also produce fern-like patterns in samples from eye mucosa."

"One of the biggest problems with saliva-based tests, we realized, was that users find it difficult to interpret the fern patterns," said Prudhvi Thirumalaraju, another co-author of this study and a senior research assistant in Shafiee's laboratory. "We figured that advances in AI can be put to good use here, to help people get objective results on their smartphones."

The new system is constrained by some of the same limitations as traditional ovulation tests, and cannot detect ovulation in women with estrogen imbalance, cysts in the ovaries, and those who take fertility medications. Smoking or alcohol consumption may also interfere with accurate detection. The device will require additional testing in a larger population and approval by the Federal Drug Administration before it can be brought to market.

Potluri V, Kathiresan PS, Kandula H, Thirumalaraju P, Kanakasabapathy MK, Kota Sai Pavan S, Yarravarapu D, Soundararajan A, Baskar K, Gupta R, Gudipati N, C Petrozza J, Shafiee H.
An inexpensive smartphone-based device for point-of-care ovulation testing.
Lab Chip. 2018 Dec 18;19(1):59-67. doi: 10.1039/c8lc00792f.

Most Popular Now

What the Radiologist should Know about A…

This paper aims to provide a review of the basis for application of AI in radiology, to discuss the immediate ethical and professional impact in radiology, and to consider possible...

The Mobile Game that can Detect Alzheime…

A specially designed mobile phone game can detect people at risk of Alzheimer's - according to new research from the University of East Anglia. Researchers studied gaming data from an...

Hospital Diagnoses Critically Ill Childr…

The Rady Children’s Hospital (San Diego, USA) used Moon, software developed by the Leuven-based (Belgium) company Diploid. Moon is the first software worldwide to use Artificial Intelligence (AI) for the...

AstraZeneca Starts Artificial Intelligen…

AstraZeneca and BenevolentAI began a long-term collaboration to use artificial intelligence (AI) and machine learning for the discovery and development of new treatments for chronic kidney disease (CKD) and idiopathic...

Novartis Presents First-of-its-Kind Algo…

Novartis today announced results from a validation study of the innovative, algorithm-based digital solution MS Progression Discussion Tool, or MSProDiscussTM. The tool aims to support and facilitate a discussion between...

Bayer Joins Sensyne Health Consortium Wo…

Sensyne Health plc (LSE: SENS), the British clinical AI technology company, and Bayer, the life sciences company, announce that Bayer has become Sensyne Health's preferred pharmaceutical partner to work together...

Red Hat Helps Public Health England Use …

Red Hat, Inc. (NYSE: RHT), the world's leading provider of open source solutions, announced that Public Health England (PHE), an executive agency of the Department of Health and Social Care...

Chipmunk Health Chooses Philips HealthSu…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced that telehealth service provider Chipmunk Health, with locations in the Netherlands and Canada, is leveraging the capabilities...

Siemens Healthineers and European Societ…

With their first course under the heading "Intelligence. Innovation. Imaging - The perfect vision of AI," held in Barcelona on April 5-6, Siemens Healthineers and the European Society of Radiology...

Mobile Prenatal App Shown to Reduce in-P…

Using the mobile app Babyscripts reduced in-person prenatal care visits while maintaining patient and provider satisfaction, according to research published in JMIR mHealth and uHealth by physician researchers from the...